[ posts only (not attachments) ]

Go to multi-category search »


View titles only
(by date)
List all documents, ordered…

By Title

By Author

View PDF, DOC, PPT, and XLS files on line

Add NWW documents to your site (click here)

Sign up for daily updates

Keep Wind Watch online and independent!

Donate $10

Donate $5

News Watch

Selected Documents

Research Links


Press Releases


Publications & Products

Photos & Graphics


Allied Groups

Resource Documents: Europe (33 items)


Unless indicated otherwise, documents presented here are not the product of nor are they necessarily endorsed by National Wind Watch. These resource documents are shared here to assist anyone wishing to research the issue of industrial wind power and the impacts of its development. The information should be evaluated by each reader to come to their own conclusions about the many areas of debate. • The copyrights reside with the sources indicated. As part of its noncommercial effort to present the environmental, social, scientific, and economic issues of large-scale wind power development to a global audience seeking such information, National Wind Watch endeavors to observe “fair use” as provided for in section 107 of U.S. Copyright Law and similar “fair dealing” provisions of the copyright laws of other nations.

Date added:  September 15, 2019
Denmark, Europe, Germany, Italy, Netherlands, Noise, Regulations, TechnologyPrint storyE-mail story

Implementation of the issue of noise from wind turbines at low frequencies

Author:  Marini, Martino; et al.

The enduring energy scenario leads to further promote the development of the exploitation of renewable energy sources. Recent European standards have been defining a path to reach in 2050 a level of decarbonization lower of 80% compared to 1990. Wind farms have been growing quickly for [the] last decade with individual wind turbines getting larger and larger. In addition to the benefits of containing greenhouse gas emissions and restraining the use of depletable resources, drawbacks have also appeared due to noise generation from wind turbines and adverse reaction of some nearby residents. The noise generated by wind turbines has a broad spectrum character but the low frequency noise causes special problems. It is a fact that in different European countries special laws have been adopted to impose noise limits and evaluation methods for the assessment of environmental low frequency noise from this kind of sound source. Other countries are still lacking specific rules but in the authorization procedure such analysis is required by environmental control agencies. The purpose of this study consists of comparing the assessment procedures currently used in different European countries for the prediction of low frequency noise from wind turbines and its propagation. The comparison of procedures gives a chance to put forward progressions in low frequency noise emission and reception.

Martino MARINI, DADU University of Sassari, Italy
Costantino Carlo MASTINO, Roberto BACCOLI, Andrea FRATTOLILLO, DICAAR University of Cagliari, Italy
Antonino DI BELLA5, DII University of Padova, Italy

Proceedings of the 23rd International Congress on Acoustics, 9–13 September 2019, Aachen, Germany: pages 1441–1446

Download original document: “Implementation of the issue of noise from wind turbines at low frequencies

Bookmark and Share

Date added:  August 29, 2019
Denmark, HealthPrint storyE-mail story

Long-term wind turbine noise exposure and the risk of incident atrial fibrillation in the Danish Nurse cohort

Author:  Bräuner, Elvira; et al.



BACKGROUND: The potential health effects related to wind turbine noise (WTN) have received increased focus during the past decades, but evidence is sparse. We examined the association between long-term exposure to wind turbine noise and incidence of atrial fibrillation (AF).

METHODS: First ever hospital admission of AF amongst 28,731 female nurses in the Danish Nurse Cohort were identified in the Danish National Patient register until ultimo 2013. WTN levels at residential addresses between 1982 and 2013 were estimated using the Nord2000 noise propagation model, as the annual means of Lden, Lday, Levening and Lnight at the most exposed façade. Time-varying Cox proportional hazard regression models were used to examine the association between the 11-, 5- and 1-year rolling means of WTN levels and AF incidence.

RESULTS: 1430 nurses developed AF by end of follow-up in 2013. Mean (standard deviation) baseline residential noise levels amongst exposed nurses were 26.3 (6.7) dB and slightly higher in those who developed AF (27.3 (7.31) dB), than those who didn’t (26.2 (6.6)). We observed a 30% statistically significant increased risk (95% CI: 1.05-1.61) of AF amongst nurses exposed to long-term (11-year running mean) WTN levels ≥20 dB(A) at night compared to nurses exposed to levels <20 dB(A). Similar effects were observed with day (HR 1.25; 95% CI: 1.01-1.54), and evening (HR 1.25; 95% CI: 1.01-1.54) noise levels. CONCLUSIONS: We found suggestive evidence of an association between long-term exposure to WTN and AF amongst female nurses. However, interpretation should be cautious as exposure levels were low.

Elvira V. Bräuner, Jeanette T. Jørgensen, Anne Katrine Duun-Henriksen, Zorana J. Andersen
Section of Environmental Health, Department of Public Health, University of Copenhagen, Denmark
Claus Backalarz, Jens E. Laursen, Torben H. Pedersen
DELTA Acoustics, Hørsholm, Denmark
Mette K. Simonsen
Diakonissestiftelsen; and The Parker Institute, Copenhagen University Hospital, Bispebjerg, Frederiksberg, Denmark

Environ Int. 2019 Sep;130:104915. doi: 10.1016/j.envint.2019.104915. Epub 2019 Jul 22.

Download original document: “Long-term wind turbine noise exposure and the risk of incident atrial fibrillation in the Danish Nurse cohort

Bookmark and Share

Date added:  August 26, 2019
Spain, WildlifePrint storyE-mail story

Griffon vulture mortality at wind farms in southern Spain: Distribution of fatalities and active mitigation measures

Author:  de Lucas, Manuela; et al.

Wind is increasingly being used as a renewable energy source around the world. Avian mortality is one of the negative impacts of wind energy and a new technique that reduces avian collision rates is necessary. Using the most frequently-killed species, the griffon vulture (Gyps fulvus), we studied its mortality at 13 wind farms in Tarifa, Cadiz, Spain, before (2006–2007) and after (2008–2009) when selective turbine stopping programs were implemented as a mitigation measure. Ten wind farms (total of 244 turbines) were selectively stopped and three wind farms (total of 52 turbines) were not. We found 221 dead griffon vultures during the entire study and the mortality rate was statistically different per turbine and year among wind farms. During 2006–2007, 135 griffon vultures were found dead and the spatial distribution of mortality was not uniformly distributed among turbines, with very few turbines showing the highest mortality rates. The 10 most dangerous turbines were distributed among six different wind farms. Most of the mortalities were concentrated in October and November matching the migratory period. During 2008–2009, we used a selective stopping program to stop turbines when vultures were observed near them and the griffon vulture mortality rate was reduced by 50% with a consequent reduction in total energy production of by the wind farms by only 0.07% per year. Our results indicate that the use of selective stopping techniques at turbines with the highest mortality rates can help to mitigate the impacts of wind farms on birds with a minimal affect on energy production.

► We studied griffon vulture mortality at 13 wind farms in Tarifa, before and after selective stopping program was implemented.
► 221 Dead vultures were found during the study and mortality rate was different per turbine and year among wind farms.
► During 2006–2007, 135 vultures dead and not uniformly distributed among turbines. Mortalities concentrated in October–November.
► During 2008–2009, program to stop turbines when vultures were observed near was applied. Mortality rate was reduced by 50%.
► Selective stopping turbines with the highest mortality rates can help to mitigate the impacts of wind farms on birds.

Manuela de Lucas, Miguel Ferrer, Department of Ethology and Biodiversity Conservation, Estación Biológica de Doñana (CSIC), Seville, Spain
Marc J.Bechard, Raptor Research Center, Department of Biological Sciences, Boise State University, Idaho, USA
Antonio R.Muñoz, Fundación Migres, Algeciras, Spain

Biological Conservation, Volume 147, Issue 1, March 2012, Pages 184-189
doi: 10.1016/j.biocon.2011.12.029

Download original document: “Griffon vulture mortality at wind farms in southern Spain: Distribution of fatalities and active mitigation measures

Bookmark and Share

Date added:  March 18, 2019
Denmark, Health, NoisePrint storyE-mail story

Impact of Long-Term Exposure to Wind Turbine Noise on Redemption of Sleep Medication and Antidepressants: A Nationwide Cohort Study

Author:  Poulsen, Aslak Harbo; et al.

BACKGROUND: Noise from wind turbines (WTs) is associated with annoyance and, potentially, sleep disturbances.

OBJECTIVES: Our objective was to investigate whether long-term WT noise (WTN) exposure is associated with the redemption of prescriptions for sleep medication and antidepressants.

METHODS: For all Danish dwellings within a radius of 20-WT heights and for 25% of randomly selected dwellings within a radius of 20-to 40-WT heights, we estimated nighttime outdoor and low-frequency (LF) indoor WTN, using information on WT type and simulated hourly wind. During follow-up from 1996 to 2013, 68,696 adults redeemed sleep medication and 82,373 redeemed antidepressants, from eligible populations of 583,968 and 584,891, respectively. We used Poisson regression with adjustment for individual and area-level covariates.

RESULTS: Five-year mean outdoor nighttime WTN of ≥42 dB was associated with a hazard ratio (HR) = 1.14 [95% confidence interval (CI]: 0.98, 1.33) for sleep medication and HR = 1.17 (95% CI: 1.01, 1.35) for antidepressants (compared with exposure to WTN of <24 dB). We found no overall association with indoor nighttime LF WTN. In age-stratified analyses, the association with outdoor nighttime WTN was strongest among persons ≥65 y of age, with HRs (95% CIs) for the highest exposure group (≥42 dB) of 1.68 (1.27, 2.21) for sleep medication and 1.23 (0.90, 1.69) for antidepressants. For indoor nighttime LF WTN, the HRs (95% CIs) among persons ≥65 y of age exposed to≥15 dB were 1.37 (0.81, 2.31) for sleep medication and 1.34 (0.80, 2.22) for antidepressants.

CONCLUSIONS: We observed high levels of outdoor WTN to be associated with redemption of sleep medication and antidepressants among the elderly, suggesting that WTN may potentially be associated with sleep and mental health.

Aslak Harbo Poulsen, Ole Raaschou-Nielsen, Alfredo Peña, Andrea N. Hahmann, Rikke Baastrup Nordsborg, Matthias Ketzel, Jørgen Brandt, and Mette Sørensen
Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen
Department of Environmental Science, Aarhus University, Roskilde, Denmark
3DTU Wind Energy, Department of Wind Energy, Technical University of Denmark, Roskilde
Department of Natural Science and Environment, Roskilde University, Denmark
Global Center for Clean Air Research (GCARE), University of Surrey, United Kingdom

Environmental Health Perspectives, March 2019

Download original document: “Impact of Long-Term Exposure to Wind Turbine Noise on Redemption of Sleep Medication and Antidepressants: A Nationwide Cohort Study

Bookmark and Share

« Later DocumentsHomeEarlier Documents »

Get the Facts Follow Wind Watch on Twitter

Wind Watch on Facebook


© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.