[ posts only (not attachments) ]

ISSUES/LOCATIONS

View titles only
(by date)
List all documents, ordered…

By Title

By Author

View PDF, DOC, PPT, and XLS files on line
RSS

Add NWW documents to your site (click here)

Sign up for daily updates

Keep Wind Watch online and independent!

Donate $10

Donate $5

News Watch

Selected Documents

Research Links

Alerts

Press Releases

FAQs

Publications & Products

Photos & Graphics

Videos

Allied Groups

Resource Documents: Europe (27 items)

RSSEurope

Documents presented here are not the product of nor are they necessarily endorsed by National Wind Watch. These resource documents are provided to assist anyone wishing to research the issue of industrial wind power and the impacts of its development. The information should be evaluated by each reader to come to their own conclusions about the many areas of debate.


Date added:  November 16, 2017
Health, Noise, SwedenPrint storyE-mail story

Wind Turbine Noise Effects on Sleep: The WiTNES study

Author:  Smith, Michael; Ögren, Mikael; Thorsson, Pontus; Hussain-Alkhateeb, Laith; Pedersen, Eja; Forssén, Jens; Ageborg Morsing, Julia; and Persson Waye, Kerstin

ABSTRACT —
Onshore wind turbines are becoming increasingly widespread globally, with the associated net effect that a greater number of people will be exposed to wind turbine noise (WTN). Sleep disturbance by WTN has been suggested to be of particular importance with regards to a potential impact on human health. Within the Wind Turbine Noise Effects on Sleep (WiTNES) project, we have experimentally investigated the physiological effects of night time WTN on sleep using polysomnography and self-reporting protocols. Fifty participants spent three nights in the sound exposure laboratory. To examine whether habituation or sensitisation occurs among populations with long-term WTN exposure, approximately half of the participants lived within 1km of at least one turbine. The remaining participants were not exposed to WTN at home. The first night served for habituation and one WTN-free night served to measure baseline sleep. Wind turbine noise (LAEq,indoor,night=31.9 dB) was introduced in one night. This exposure night included variations in filtering, corresponding to a window being fully closed or slightly open, and variations in amplitude modulation

Michael Smith, Mikael Ögren, Laith Hussain-Alkhateeb, Julia Ageborg Morsing, Kerstin Persson Waye
Department of Occupational and Environmental Medicine, Institute of Medicine, University of Gothenburg, Sweden

Pontus Thorsson, Jens Forssén
Division of Applied Acoustics, Department of Civil and Environmental Engineering, Chalmers University of Technology, Gothenburg, Sweden

Eja Pedersen
Department of Architecture and the Built Environment, Lund University, Sweden

Presented at the 12th ICBEN Congress on Noise as a Public Health Problem, 18–22 June, Zurich

INTRODUCTION

Sleep is vital for adequate health and wellbeing, yet by its very definition is reversible. Such reversibility presents the opportunity for external factors, including noise, to disrupt sleep as the brain awakes the body following environmental intrusion. The link between traffic noise and sleep disruption is well established, yet the effects of noise from wind turbines is comparatively under-examined, although the body of research is growing. There is some evidence for an association between sleep disturbance and wind turbine noise (WTN) levels, but there has also been recent work finding no link between one-year WTN averages and sleep outcomes.

Response to a sound is not wholly dependent on the acoustical characteristics such as level, duration and frequency content. An individual’s tolerance and attitude to a certain sound can moderate their response, and persistent exposure may lead to an increase or a decrease in reaction. In the case of habituation, repeated exposure over time results in an individual reacting less strongly than previously to an exposure of the same amplitude. For example, long-term behavioural adaptation to noise occurs in fish following repeated motorboat noise exposure following an initial increase in hiding. It is unclear however whether behavioural changes such as these in humans may reflect true habituation, involving synaptic plasticity mechanisms such as long-term depression, or if these changes are instead indicative of coping strategies. In the opposite direction to habituation, sensitisation occurs when repeated exposure leads to a stronger response over time. For instance, in the famous example of a dripping tap, the sound may be innocuous at first but can become unbearable after persistent exposure.

Possible habituation or sensitisation to WTN represents a potential explanation for the disparity in findings from research into the effects of WTN on human response. This paper therefore describes a study performed to investigate the physiological impact on sleep from WTN exposure. The Wind Turbine Noise Effects on Sleep (WiTNES) project was performed with the aims of investigating the physiological or psychological impact of WTN on sleep, and whether repeated WTN exposure at home may lead to habituation or sensitisation. …

Self-reported outcomes

The results of the models for each outcome, which includes WTN exposure night alone as a predictor, are presented in Table 4. All response items excepting tenseness, perceived sleep depth and social orientation were significantly negatively affected following nights with WTN exposure. Furthermore, the exposed study group differed from the control group in the majority of the response items, rating their sleep as worse even in the absence of WTN exposure. There was a significant effect of sex for sleep depth and WTN causing difficulty falling back asleep, in both instances with men having worse sleep. Effects of noise sensitivity were seen for WTN causing tiredness and both mood items. Regular sleep difficulties was a significant predictor for around half of all outcomes, including difficulty sleeping, one of the three outcomes for which no effect of WTN exposure was seen. No significant effects of age were found for any of the outcomes, and no WTN exposure × group interactions were observed.

DISCUSSION

Almost all measures of self-reported sleep were negatively impacted following nights with wind turbine noise. The WTN nights lead to increased sleep disturbance, reduced sleep quality, increased tiredness, increased irritation, awakenings, increased difficulty to sleep, sleeping worse than usual, and decreased mood. Subjects dwelling close to wind turbines, and consequently potentially exposed to WTN at home, repeatedly scored their sleep and restoration lower than the reference group following the WTN nights. However, their baseline sleep and restoration scored after the quiet WTN-free night were also generally scored lower than by the reference group. Although efforts were made during recruitment to obtain as similar a study sample from both the exposed and reference groups, a larger proportion of participants in the exposed group reported excessive tiredness at least once a month (58% vs. 20%) or difficulties sleeping at home at least several times a month (61% vs. 41%). Nevertheless, the effect of WTN exposure on sleep remained even after correcting for regular sleep difficulties and tiredness. … Despite the limitations of questionnaires and the study design, the present paper provides evidence that a single night of wind turbine noise at indoor levels of LAEq,8h=31.9 dB negatively impacts self-reported sleep.

Download original document: “Wind Turbine Noise Effects on Sleep: The WiTNES study

Bookmark and Share


Date added:  November 14, 2017
Portugal, WildlifePrint storyE-mail story

Indirect Impacts of Wind Farms on Terrestrial Mammals: Insights from the Disturbance and Exclusion Effects on Wolves (Canis lupus)

Author:  Ferrão da Costa, Gonçalo; et al.

Abstract —
Due to the technical and functional characteristics of wind turbines, impact assessment studies have focused mainly on flying vertebrates. Nevertheless, evidence from the little available knowledge indicates potential impacts on large terrestrial mammals resulting from habitat fragmentation and increasing human disturbance. Over the last 15 years, more than 900 wind turbines were built inside the range of the Portuguese wolf. Due to the endangered status of this large carnivore in Portugal, several monitoring plans were conducted, resulting in a reasonable amount of information being collected on the effects of wind farms on wolves. We reviewed the methodological approaches, compiled major findings and summarised the mitigation/compensation measures used in Portuguese wind farms. The overall outcomes show increasing human disturbance in wind farm areas, resulting in lower wolf reproduction rates during construction and the first years of operation, as well as shifts in denning site locations of more than 2.5 km away from the wind farm. These findings are of major concern in humanised landscapes, where suitable wolf breeding habitats are reduced. As precautionary measure, new wind farm projects should be restricted in areas that are closer than 2 km from known wolf denning locations.

Gonçalo Ferrão da Costa
João Paula

Bioinsight, Odivelas, Portugal
Francisco Petrucci-Fonseca
Grupo Lobo, Department of Animal Biology and CE3C—Centre for Ecology, Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon, Portugal
Francisco Álvares
CIBIO/InBIO—Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal

In: Mascarenhas M., Marques A., Ramalho R., Santos D., Bernardino J., Fonseca C. (eds) Biodiversity and Wind Farms in Portugal. Springer Cham, 2018; chapter 5, pp 111–134

The Indirect Impacts of Wind Farms on Terrestrial Mammals: Insights from the Disturbance and Exclusion Effects on Wolves (Canis lupus)

Bookmark and Share


Date added:  November 11, 2017
Europe, Greece, WildlifePrint storyE-mail story

Balanced solution to the cumulative threat of industrialized wind farm development on cinereous vultures (Aegypius monachus) in south-eastern Europe

Author:  Vasilakis, Dimitris; Whitfield, D. Philip; and Kati, Vassiliki

Abstract —
Wind farm development can combat climate change but may also threaten bird populations’ persistence through collision with wind turbine blades if such development is improperly planned strategically and cumulatively. Such improper planning may often occur. Numerous wind farms are planned in a region hosting the only cinereous vulture population in south-eastern Europe. We combined range use modelling and a Collision Risk Model (CRM) to predict the cumulative collision mortality for cinereous vulture under all operating and proposed wind farms. Four different vulture avoidance rates were considered in the CRM. Cumulative collision mortality was expected to be eight to ten times greater in the future (proposed and operating wind farms) than currently (operating wind farms), equivalent to 44% of the current population (103 individuals) if all proposals are authorized (2744 MW). Even under the most optimistic scenario whereby authorized proposals will not collectively exceed the national target for wind harnessing in the study area (960 MW), cumulative collision mortality would still be high (17% of current population) and likely lead to population extinction. [emphasis added] Under any wind farm proposal scenario, over 92% of expected deaths would occur in the core area of the population, further implying inadequate spatial planning and implementation of relevant European legislation with scant regard for governmental obligations to protect key species. On the basis of a sensitivity map we derive a spatially explicit solution that could meet the national target of wind harnessing with a minimum conservation cost of less than 1% population loss providing that the population mortality (5.2%) caused by the operating wind farms in the core area would be totally mitigated. Under other scenarios, the vulture population would probably be at serious risk of extinction. Our ‘win-win’ approach is appropriate to other potential conflicts where wind farms may cumulatively threaten wildlife populations.

Dimitris P. Vasilakis
Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Aitoloakarnania, Greece; Directorate of Evros Region Forestry Service, Decentralized Administration of Macedonia-Thrace, Alexadroupolis, Evros, Greece
D. Philip Whitfield
Natural Research, Brathens Business Park, Banchory, Aberdeenshire, United Kingdom
Vassiliki Kati
Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Aitoloakarnania, Greece

PLoS One; Published February 23, 2017
doi: 10.1371/journal.pone.0172685

Download original document: “A balanced solution to the cumulative threat of industrialized wind farm development on cinereous vultures (Aegypius monachus) in south-eastern Europe

Bookmark and Share


Date added:  November 11, 2017
Aesthetics, Economics, ScotlandPrint storyE-mail story

Wind farms and tourism in Scotland: A review with a focus on mountaineering and landscape

Author:  Gordon, David

Introduction

1. In the course of public debate on contentious topics, especially when large sums of money and politics are involved, ‘evidence’ is often collateral damage. Statistics are more often than not used, as the old joke has it, as a drunk uses a lamp-post: for support not for illumination.

2. This paper is the product of frustration and dismay at the misuse of evidence, particularly statistical evidence, by a powerful pro-wind lobby to create a confused, unbalanced and complacent picture of the possible impact of the growth of onshore wind electricity generation in Scotland on tourism and recreation, particularly mountainlinked tourism and recreation. Hyperbole by opponents of wind energy in the face of this well-organised and well-connected lobby is understandable, but equally fails to illuminate.

3. Proponents of wind farms would have us believe that tourism impacts are negligible. Opponents would have us believe that the destruction of tourism in Scotland is nigh. Neither position is at all tenable. The real position is much more subtle and complex. That is an uncomfortable message for all sides in a polarised debate.

4. This paper is an independently-written attempt to assess, as objectively as possible, what is really known about the possible impact of wind farms upon mountain-linked tourism and recreation within Scotland. This is set in the context of tourism in general, not least because there is no data specifically on mountaineering other than that produced by Mountaineering Scotland itself. It is foregrounded by a brief setting out of my personal and Mountaineering Scotland’s positions so that readers can judge whether these have biased my interpretation of the available evidence.

The key findings are:

5. There is no simple answer to the question of whether wind farms affect tourism (or recreation). It depends on

6. The hypothesis that best fits the available, far from perfect, data is that wind farms do have an effect on tourism but the effect is experienced predominantly in areas where large built structures are dissonant with expectations of desired attributes such as wildness or panoramic natural vistas, and where a high proportion of visitors come from the 25% of tourists in Scotland who are particularly drawn by the quality of upland and natural landscapes, with mountaineering visitors prominent amongst these. In much of Scotland, and for most tourists, wind farms are no serious threat to tourism: the nature of the local tourism offer, and good siting of wind farms, mean they can co-exist.

7. The main adverse effect of wind farms on tourism, thus far, is displacement within Scotland from areas perceived as ‘spoilt’ to areas seen as still retaining the desired sense of naturalness. The GCU Moffat Centre study, relied upon by developers and the Scottish Government, estimated the likely level of tourism displacement across Scotland by wind farms to be around 1-2%. The estimates in the present paper range up to 5%. This difference is modest given the five-fold increase in onshore wind farm capacity in Scotland between the data points for the two studies (2007 & 2015).

8. Tourism in Scotland is not thriving, with standard indicators of tourism volume in 2016, the latest available consistent data, still below pre-2008 levels. Positive media coverage of a ‘thriving’ tourism sector, typically based on statistically selective press releases, is seldom supported by the full figures. In a competitive world, it is foolish to put at risk any segment of Scotland’s tourism market.

9. Five per cent of Scottish tourism spend would be £250m. This is well within the range of fluctuation seen in national tourist spend from year to year and therefore undetectable, even if it was all lost to Scotland and not simply displaced within Scotland. Since the true figure could well be smaller, attempting to find evidence in national or regional tourism statistics of the effect of any particular change is almost certainly futile. It is statistically illiterate to think the lack of detection of a modest effect in volatile regional and national tourism statistics is evidence of no effect.

10. But any effect of wind farms will be much less visible in routine statistics because the income is not lost to the national tourism economy but displaced and relocated within Scotland. Even the lowest level estimated – 1% or £35m – would have a marked impact if concentrated in a limited number of places. It is still doubtful if such an effect could be detected in routine statistics since much tourism economic activity does not feature in statistics (e.g. many tourism business are below the VAT registration level) and it is such activity that might be most likely to be affected by a local drop in visitors.

11. BiGGAR Economics has attempted to look at impact in the vicinity of a general cohort of wind farms and has found no effect. Setting aside several methodological concerns about this study, the sample included only one wind farm in an area where a tourism effect would be predicted based on the conclusions of the present paper. The postconstruction outcome data for this wind farm was confounded by continuing wind farm construction locally, making it impossible to separate any tourism effect from the effect of construction worker accommodation and expenditure.

12. The evidence on wind farms and tourism in Scotland relates to the present pattern of development consented under a rigorous planning system. Mountaineering Scotland does not agree with all planning decisions, but the process is certainly exacting. This makes it difficult to assess impact on mountaineering or wild land tourism empirically because few wind farms that might be expected to have an adverse effect have been consented and most are not yet built. Insofar as Mountaineering Scotland objections can be used to identify planning applications in areas important for mountaineering and related tourism, there have been only eight wind farm consents in such areas and only two were operational by 2016. When wind farms are refused planning permission in mountain or wild land areas the reasons given are typically landscape and visual, but an unrecognised side-effect has been to limit potential for tourism impacts.

13. Despite the clearly inadequate nature of the present evidence base on wind farms and tourism, the Scottish Government remains content with reviews of old research with almost no primary research later than 2008, despite the substantially changed context. That the government and its agencies have little interest in commissioning research to better define and understand the interaction between specific segments of the tourism market and wind farms is to be regretted and serves the public interest poorly.

14. Strategic and local planning decisions on the extent and pattern of wind farm development in Scotland should take better account of the potential for adverse impact in areas important for landscape-dependent tourism, and safeguard sufficient such areas in each part of Scotland. It is not enough to protect only those landscapes within the small number of National Parks and National Scenic Areas.

Published by Mountaineering Scotland, November 2017

Download original document: “Wind farms and tourism in Scotland: A review with a focus on mountaineering and landscape

Bookmark and Share


Earlier Documents »

Get the Facts Follow Wind Watch on Twitter

Wind Watch on Facebook

Share

CONTACT DONATE PRIVACY ABOUT SEARCH
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.
Share

Wind Watch on Facebook

Follow Wind Watch on Twitter