ISSUES/LOCATIONS

View titles only
(by date)
List all documents, ordered…

By Title

By Author

View PDF, DOC, PPT, and XLS files on line
RSS

Add NWW documents to your site (click here)

Sign up for daily updates

Keep Wind Watch online and independent!

Donate $10

Donate $5

News Watch

Selected Documents

Research Links

Alerts

Press Releases

FAQs

Publications & Products

Photos & Graphics

Videos

Allied Groups

Resource Documents — latest additions

Documents presented here are not the product of nor are they necessarily endorsed by National Wind Watch. These resource documents are provided to assist anyone wishing to research the issue of industrial wind power and the impacts of its development. The information should be evaluated by each reader to come to their own conclusions about the many areas of debate.


Date added:  June 23, 2017
Economics, Grid, U.S.Print storyE-mail story

Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar

Author:  Clack, Christopher; Qvist, Staffan; Apt, Jay; et al.

[Abstract] A number of analyses, meta-analyses, and assessments, including those performed by the Intergovernmental Panel on Climate Change, the National Oceanic and Atmospheric Administration, the National Renewable Energy Laboratory, and the International Energy Agency, have concluded that deployment of a diverse portfolio of clean energy technologies makes a transition to a low-carbon-emission energy system both more feasible and less costly than other pathways. In contrast, Jacobson et al. [Proc Natl Acad Sci U S A 2015;112(49):15060–5 (ref. 11)] argue that it is feasible to provide “low-cost solutions to the grid reliability problem with 100% penetration of WWS [wind, water and solar power] across all energy sectors in the continental United States between 2050 and 2055”, with only electricity and hydrogen as energy carriers. In this paper, we evaluate that study and find significant short- comings in the analysis. In particular, we point out that this work used invalid modeling tools, contained modeling errors, and made implausible and inadequately supported assumptions. Policy makers should treat with caution any visions of a rapid, reliable, and low-cost transition to entire energy systems that relies almost exclusively on wind, solar, and hydroelectric power.

[Introduction] Wind and solar are variable energy sources, and some way must be found to address the issue of how to provide energy if their immediate output cannot continuously meet instantaneous demand. The main options are to (i) curtail load (i.e., modify or fail to satisfy demand) at times when energy is not available, (ii) deploy very large amounts of energy storage, or (iii) provide supplemental energy sources that can be dispatched when needed. It is not yet clear how much it is possible to curtail loads, especially over long durations, without incurring large economic costs. There are no electric storage systems available today that can affordably and dependably store the vast amounts of energy needed over weeks to reliably satisfy demand using expanded wind and solar power generation alone. These facts have led many US and global energy system analyses (1–10) to recognize the importance of a broad portfolio of electricity generation technologies, including sources that can be dispatched when needed.

[Conclusions] The scenarios of ref. 11 can, at best, be described as a poorly executed exploration of an interesting hypothesis. The study’s numerous shortcomings and errors render it unreliable as a guide about the likely cost, technical reliability, or feasibility of a 100% wind, solar, and hydroelectric power system.

Christopher T. M. Clack, Staffan A. Qvist, Jay Apt, Morgan Bazilian, Adam R. Brandt, Ken Caldeira, Steven J. Davis, Victor Diakov, Mark A. Handschy, Paul D. H. Hines, Paulina Jaramillo, Daniel M. Kammen, Jane C. S. Long, M. Granger Morgan, Adam Reed, Varun Sivaram, James Sweeney, George R. Tynan, David G. Victor, John P. Weyant, and Jay F. Whitacre

Proceedings of the National Academy of Sciences of the United States of America
Published online June 19, 2017. doi: 10.1073/pnas.1610381114

Download original document: “Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar

Download Supporting Information Appendix containing the details of this evaluation.

Download Dataset 1 and Dataset 2 containing data and calculations used to produce the figures.

Bookmark and Share


Date added:  June 22, 2017
NoisePrint storyE-mail story

12th ICBEN Congress on Noise as a Public Health Problem

Author:  Various

Selected papers from the 12th International Commission on Biological Effects of Noise Congress on Noise as a Public Health Problem, Zurich, 18–22 June 2017:

Recent progress in the field of non-auditory health effects of noise – trends and research needsby Yvonne de Kluizenaar and Toshihito Matsui – The Netherlands and Japan
… A wealth of new research on non-auditory health effects of noise has been published over the last 3 years. …

Health Effects of Low Frequency Noise and Infrasound from Wind Farms: Results from an Independent Collective Expertise in Franceby Philippe Lepoutre, Paul Avan, Anthony Cadene, David Ecotière, Anne-Sophie Evrard, Frédérique Moati, and Esko Topilla – France
… Recent results on the physiology of cochleo-vestibular system have revealed several pathways of physiological effects mechanisms that could be activated in response to exposure to ILFN. This sensory system has a particular sensitivity to these frequencies, superior to that of other parts of the human body. Available data suggest the hypothesis that sounds of frequencies too low or levels too low to be clearly audible could have effects mediated by receptors of the cochleo-vestibular system. …

Noise Annoyance Caused by Large Wind Turbines – A Dose-Response Relationshipby Valtteri Hongisto and David Oliva – Finland
The purpose was to determine a dose-response-relationship of large wind turbines with nominal power of 3-5 MW. A cross-sectional survey was conducted around three wind power areas in Finland. The sample involved all households within 2km from the nearest turbine. Altogether 400 households out of 753 reported the annoyance indoors. The dose-response relationship was determined between the predicted noise exposure, LAeq, outdoors and the percentage of highly annoyed by wind turbine noise indoors. The percentage of highly annoyed, %HA, was less than 3%, and relatively even below 40dB LAeq. %HA started to increase when the level exceeded 40dB. …

Hearing Beyond the Limit: Measurement, Perception and Impact of Infrasound and Ultrasonic Noiseby Christian Koch – Germany
In our daily lives, many sources emit infrasound due to their functions or as a side effect. At the other end of the hearing frequency range, airborne ultrasound is applied in many technical and medical processes and has also increasingly moved into everyday life. There are numerous indicators that sound at these frequencies can be perceived and can influence human beings. However, the precise mechanisms of this perception are unknown at present and this lack of understanding is reflected by the unsatisfactory status of the existing regulations and standards. …

A Review of the Human Exposure-Response to Amplitude-Modulated Wind Turbine Noise: Health Effects, Influences on Community Annoyance, Methods of Control and Mitigationby Michael J. B. Lotinga, Richard A. Perkins, Bernard Berry, Colin J. Grimwood, and Stephen A. Stansfeld – U.K.
… The conclusions of most reviews of the research on the effects of WTN on health, including those carried out on behalf of Government agencies, confirm that annoyance is caused by WTN, and that AM appears to increase annoyance. The association of WTN with sleep disturbance appears to be considerably more complex. … All of the field studies outlined so far have focussed on the responses to time-averaged WTN exposure levels. In a study of noise emissions from 1.8 MW turbines, it was argued that noise annoyance expressed by residents at 500-1900m distances might be exacerbated by AM, increased levels and low-frequency content occurring in the late evening and night-time. These phenomena were attributed to the stable night-time atmosphere causing high wind shear, and the coincidence of AM patterns from the turbines. … On the basis of the review and studies considered above, a control for AM has been proposed for use in planning windfarm developments. This control takes as its basis the principle that AM increases annoyance caused by WTN, and that this increase can be characterised by adding a penalty value to the overall WTN level, to equalise it with subjective judgement of a negligible-AM WTN sound. The results of ref 58 suggest that fluctuation in broadband WTN-like sounds will almost certainly be sensed by most people with normal hearing at approximately 3dB ΔLAeq,100ms(BP) which forms the proposed onset for the penalty. … The possible influence of increased low-frequency content in the AM is addressed by the design of the metric used to rate the magnitude, which employs frequency filtering to ensure the signal is evaluated for the range that produces the maximum AM rating. …

Review of Research on the Effects of Noise on Sleep Over the Last 3 Yearsby Sarah McGuire and Gunn Marit Aasvang – U.S. and Norway
… Among
the new actigraphy and polysomnographic field studies are the first studies on wind turbine noise which have used objective measures of sleep, as well as a study examining the potential benefit of nighttime air-traffic curfews. Also there have been new epidemiological studies which have added to the knowledge on the effects of noise on self-reported sleep disturbance. …

The Inadequacy of the A-Frequency Weighting for the Assessment of Adverse Effects on Human Populationsby Bruce Rapley, Mariana Alves-Pereira, and Huub Bakker – New Zealand and Portugal

Case Report: Cross-Sensitisation to Infrasound and Low Frequency Noiseby Bruce Rapley, Huub Bakker, Mariana Alves-Pereira, and Rachel Summers – New Zealand
This Case Report describes an episode experienced by two noise-sensitised individuals during a field trip. Exposed to residential infrasound and low frequency noise due coal mining activities, the subjects reacted suddenly, strongly and unexpectedly to pressure pulses generated by a wind farm located at a different town, approximately 160km by road from their residence. Simultaneous physiological data obtained in one subject and subjective sensations occurring during the episode are reported. Acoustical evaluations of the location of the episode are also reported. The possibility of a nocebo effect as an etiological factor for their bodily reactions is cogently eliminated. …

Evaluation of Wind Turbine Noise in Japanby Akira Shimada and Mimi Nameki – Japan
In order to tackle with wind turbine noise (WTN) related complaints, Ministry of the Environment of Japan (MOEJ) set up an expert committee in 2013. In November 2016, the committee published a report on investigation, prediction and evaluation methods of WTN. The report compiles recent scientific findings on WTN, including the results of nationwide field measurements in Japan and the results of review of the scientific literature related to health effects of WTN. The report sets out methodology for investigation, prediction and evaluation as well as case examples of countermeasures. A noise guideline for wind turbine, which suggests WTN should not be more than 5dB above the residual noise where residual noise levels are above 35-40dB, is also presented in the report. MOEJ is developing a WTN noise guideline and a technical manual for WTN investigation based on the report. Both documents will be finalized in the fast half of 2017.

Wind Turbine Noise Effects on Sleep: The WiTNES Studyby Michael Smith, Mikael Ögren, Pontus Thorsson, Laith Hussain-Alkhateeb, Eja Pedersen, Jens Forssén, Julia Ageborg Morsing, and Kerstin Persson Waye – Sweden
Onshore wind turbines are becoming increasingly widespread globally, with the associated net effect that a greater number of people will be exposed to wind turbine noise (WTN). Sleep disturbance by WTN has been suggested to be of particular importance with regards to a potential impact on human health. … Almost all measures of self-reported sleep were negatively impacted following nights with wind turbine noise. The WTN nights lead to increased sleep disturbance, reduced sleep quality, increased tiredness, increased irritation, awakenings, increased difficulty to sleep, sleeping worse than usual, and decreased mood. Subjects dwelling close to wind turbines, and consequently potentially exposed to WTN at home, repeatedly scored their sleep and restoration lower than the reference group following the WTN nights.

Frequency Weighting for the Evaluation of Human Response to Low-Frequency Noise Based on the Physiological Evidence of the Vestibular Systemby Junta Tagusari, Shou Satou, and Toshihito Matsui – Japan
Several studies were found regarding adverse health effects due to low-frequency noise emitted by industrial machines including wind turbines. However, the causal chain between low-frequency noise and health effects still remains unclear. Meanwhile, from the physiological viewpoint, low-frequency noise stimulate hair cells in the vestibular system, which could cause dizziness, vertigo, headache and nausea. The stimulating process is different from the hearing process in the cochlea, which implies that the A-weighting is not appropriate for evaluating the risk of low-frequency noise and that an alternative method is required. …

Bookmark and Share


Date added:  June 22, 2017
EmissionsPrint storyE-mail story

Why wind power does not substantially reduce emissions

Author:  Various

Several analysts (links below) have examined the consequences of fossil fuel-fired generators, particularly natural gas, having to modulate their output and frequently start and stop to balance the highly variable infeed from wind turbines so that electrical supply is stable and reliable. The question is to factor in the increased emissions from operating the generators in that way compared with operating them more steadily, i.e., if they were not required to cope with the fluctuating contribution from wind turbines: How do the extra emissions of running the generators less efficiently compare with the emissions saved by running them less?

Since natural gas–fired generators are best able to respond quickly enough to balance wind energy, they have been added almost in parallel with wind (see graphs provided by the Department of Energy’s Energy Information Agency), so it is not wind replacing coal-generated electricity, but wind plus its necessary partner natural gas (which, fracking and methane release aside, is much cleaner than coal). Might it not only be much cheaper and less land-intensive, but also even reduce emissions more to replace coal with natural gas only?

The hidden fuel costs of wind generated electricity” by K. de Groot and C. le Pair

The impact of wind generated electricity on fossil fuel consumption” by C. le Pair and K. de Groot

Wind integration: Incremental emissions from back-up generation cycling (Part V: Calculator update)” [with links to Parts I–IV] by Kent Hawkins

Big wind: How many households served, what emissions reduction? (a case study)” by Kent Hawkins and Donald Hertzmark

Integrating Renewables: Have Policymakers Faced the Realities?” by Kent Hawkins

Integrating Wind Power: Wind Fails in Two Important Performance Measures” by Kent Hawkins

Analysis of Ontario’s electricity system” by Kent Hawkins

Air emissions due to wind and solar power” by Warren Katzenstein and Jay Apt

Cost and quantity of greenhouse gas emissions avoided by wind generation” by Peter Lang

Calculating wind power’s environmental benefits” by Tom Hewson and David Pressman

Reduction in carbon dioxide emissions: estimating the potential contribution from wind-power” by David White

Less than one-fourth of projected fuel savings from wind on Falklands

Bookmark and Share


Date added:  June 10, 2017
Health, NoisePrint storyE-mail story

Seeking Damages from Wind Energy Project Owners/Operators

Author:  Mitchell, Peter

Disclaimer

Many people have had their lives adversely impacted by the deployment of wind turbines in their district. Many more will become impacted by permitted but yet to be built wind projects. Often the impacts are of a magnitude that justify compensation in various forms.

This document has been prepared as a general guide to help identify the elements and possible magnitude of claims against the owner and/or the operator of a wind turbine project. The author is not a lawyer and takes no responsibility whatsoever for any use of any of the numbers herein which are merely presented for orientation purposes.

Any person who wishes to make a claim needs to consider their own circumstances and to obtain legal advice and assistance in making a claim.

The Purpose of This Document

This document is intended to give some guidance to those neighbours of wind turbine projects (WTPs) seeking relief on the construction of a financial claim for damages.

It also answers some questions about making a claim, but does not instruct how the claim might be supported, i.e., the detail that needs to be documented to support an impacted person’s claim. That will require the help of an informed lawyer.

Note that this document has been written based mainly upon the Australian context but it is felt that it may be a useful starting point in other jurisdictions.

Cause of Damage

Wind turbines emit airborne (sound) and ground-borne (vibration) pressure waves. Much is known about sound waves (the audible portion of which is identified as noise). and their ability to harm and disturb neighbours up to 10 to 12 km from turbines. It is also known that vibration can also be a factor in disturbance, but at this point, it is low frequency sound and ultra-low frequency sound (infrasound) particularly where amplitude modulation is present that is understood to cause most damage.

Useful data for supporting a claim can be accessed from the extensive Waubra Foundation website (www.waubrafoundation.org.au/), e.g. under the tab Resources see Health and Legal; Friends Against Wind (www.friends-against-wind.org/) using the Justice tab; National Wind Watch (https://www.wind-watch.org) search for Litigation; and Stop These Things (https://stopthesethings.com) search for Litigation.

Form of Damage

The airborne pressure pulses which emanate from wind turbines cause physiological and psychological damage to individuals in different ways and at different intensities.

In time the body can become increasingly sensitised and ultimately permanently damaged. Homes become uninhabitable and very difficult to sell. People become trapped in unsafe locations.

A second form of damage is productivity of farm animals and the possibility that farm strategies and processes have to be changed.

However the principal matters of damage are family health and well-being, the habitability of the family residence and the safety of any associated workplace.

Constructing a Financial Claim

Here are the components of a claim and some indicative numbers.

  1. The major element is the sale of your house to the Wind Turbine Project (WTP) owner and/or operator as applicable. The price asked should not be a present valuation, i.e., with turbines in place; but the price that the property would be worth today if there was no WTP in the area. This will involve briefing a first class valuer.
  2. There should be an add-on for the disturbance of having to move, which might be a 10% to 20% addition to the property price.
  3. There should be a refund of all the property replacement expenses such as stamp duty, legal documentation and conveyancing, and direct moving expenses.
  4. Compensation for the damage and hurt caused by living in a dangerous and harmful environment for the period since the project was commissioned. It is suggested this compensation should be calculated by multiplying the number of persons living in the house by the number of years the damage has been endured by a dollar sum per person per year.

This dollar sum will depend on the severity of disturbance which generally will correlate with the separation between the house and the nearest turbines, and speculation on what courts might award then discounted for the risk and expense of going to court.

Here Is a Suggested Scale for Assessing Damage or Nuisance

Condition   $US/Person/Year
Forced to evacuate the home $150,000 to $200,000
Forced to live away as much as possible $100,000 to $150,000
Major discomfort $50,000 to $100,000

If you wish to make a claim then consider where your family fits in the above categories, and be sensible in that rating. Again take your lawyer’s advice.

Should You Engage a Lawyer?

Yes. A lawyer is required to draft your claim and to be present and lead discussions with the representative of the WTP owner and/or developer. (In the Australian context, discussions may initially involve the National Wind Farm Commissioner).

Should You Join with Others Affected by the Same Wind Project?

Yes, if you consider they are willing to pay their share of costs, will be rational, particularly not wanting to rank their claims at a higher level than is reasonable, and will act in concert with the group. The group arrangements should be drafted by a lawyer so that there is the best possible protection against the WTP owner trying to break up the group with side deals.

Combining with others will, of course, reduce the cost of hiring a lawyer to draft and present your claim and also to draft some agreement on group arrangements.

Beware of Inappropriate Confidentiality Agreements

In settling problems in the past the industry has used “gag “clauses in some largely property based settlements and those gag clauses effectively stopped people who had sold properties from saying just about anything.

However it is reasonable for owners/operators to require that financial terms offered or agreed not be disclosed. Equally you may be disclosing personal and health information that you may want to keep confidential. These objectives should be able to be achieved by a specific agreement.

What About Court Action?

It is in the interests of both parties to negotiate a settlement.

Court actions are expensive and there is a risk of losing and having to meet in some jurisdictions not only your own costs, but those of the other side.

On the other side there is much evidence that would be exposed in a court action by a skilled barrister that could be hugely damaging to the wind company and indeed the whole industry.

Thus it is better to see if a reasonable settlement can be reached and if it cannot, you will need to consider further options with your lawyers.

Prepared by: Peter R. Mitchell
3 May, 2017

Download original document: “Seeking Damages from Wind Energy Project Owners/Operators

Bookmark and Share


Earlier Documents »

Get the Facts Follow Wind Watch on Twitter

Wind Watch on Facebook

Share

CONTACT DONATE PRIVACY ABOUT SEARCH
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.
Formerly at windwatch.org.

HOME
Share

Wind Watch on Facebook

Follow Wind Watch on Twitter