Resource Documents: Maryland (7 items)
Unless indicated otherwise, documents presented here are not the product of nor are they necessarily endorsed by National Wind Watch. These resource documents are shared here to assist anyone wishing to research the issue of industrial wind power and the impacts of its development. The information should be evaluated by each reader to come to their own conclusions about the many areas of debate. • The copyrights reside with the sources indicated. As part of its noncommercial effort to present the environmental, social, scientific, and economic issues of large-scale wind power development to a global audience seeking such information, National Wind Watch endeavors to observe “fair use” as provided for in section 107 of U.S. Copyright Law and similar “fair dealing” provisions of the copyright laws of other nations.
New evidence renewables don’t reduce carbon dioxide emissions
Author: Stevenson, David
This comparison of actual regional grid carbon dioxide (CO₂) emissions between 2019 and 2021 shows increased use of wind and solar did not reduce emissions. Wind and solar electric generation are actually poor technologies no one would use without permanent government mandates and massive subsidies and taxes that are adding $1 billion a year in power cost. They are also unreliable, non-recyclable, have negative environmental impacts [1], have shorter productive life spans than alternative power sources, and take up a lot of ground. If it doesn’t reduce carbon dioxide emissions why are we using wind and solar?
The PJM regional electric grid serves over 65 million people in thirteen states. It is the largest such regional grid providing 22% of the countries electric power. Table 1 below shows how generation from various technologies changed from 2019 to 2021, Key changes are:
- Natural gas replaced coal almost one to one as it has been doing so for about the last decade.
- Special oil based backup generators ran significantly more often.
- Total carbon based generation stayed about the same at over 60% of total generation.
- Zero emission nuclear generation fell over 2%, and hydro fell about 5%.
- Combined wind and solar generation grew about 30% replacing lower nuclear and hydro generation plus covering a 0.2% increase in total regional generation, but still only equaled about 4% of total production despite over a decade of mandates and subsidies.
- Overall the emissions fell 0.8%, a small improvement.
Table 1: PJM electric generation by technology 2019 to 2021 | ||||
Fuel | 2019 | 2021 | Change MWh | Change % |
Coal | 195,288,353 | 181,354,222 | −13,934,131 | −7.1% |
Oil | 833,249 | 1,469,140 | 635,891 | 76.3% |
Natural Gas | 299,925,492 | 313,750,191 | 13,824,699 | 4.6% |
Other Gas | 2,941,982 | 2,882,541 | −59,441 | −2.0% |
SubTotal | 498,989,076 | 499,456,094 | 467,018 | 0.1% |
Hydro | 11,047,831 | 10,509,639 | −538,192 | −4.9% |
Nuclear | 278,794,565 | 272,524,267 | −6,270,298 | −2.2% |
Bio/Wood/Landfill | 5,574,896 | 5,650,284 | 75,388 | 1.4% |
Solar | 2,734,753 | 7,336,368 | 4,601,615 | 168.3% |
Wind | 24,147,354 | 27,628,094 | 3,480,740 | 14.4% |
Sub Total | 322,299,399 | 323,648,652 | 1,349,253 | 0.4% |
Total | 821,288,475 | 823,104,746 | 1,816,271 | 0.2% |
CO₂ systems mix | 851.1926 | 843.3056 | 7.8870 | −0.9% |
Source: PJM Systems Mix [2] |
Table 2 details the actual change in CO₂ emissions, but also considers how emissions may have fallen had the rate of emissions by megawatt-hour (MWh) remained the same as 2019. The key points are:
- Coal emissions should have fallen the same 7% generation did, but only fell about half as much as power plant efficiency fell.
- Emissions from oil based backup generation grew 60%, but efficiency improved about 25%.
- Natural gas generation grew 4.6%, but emissions only grew 3.6% as efficiency improved.
- Overall emissions would have fallen 2.3% instead of the actual 0.8% mainly caused by falling coal generation efficiency.
Table 2: PJM Carbon dioxide emissions by carbon-based fuels | |||||||
Fuel | 2019 tons | 2021 tons | Difference | % Change | 2021 with 2019 Emission Rates |
Difference | % Change |
Coal | 208,669,670 | 200,861,367 | 7,808,303 | −3.7% | 193,780,761 | 14,888,909 | −7.1% |
Oil | 1,201,503 | 1,923,964 | (722,461) | 60.1% | 2,118,426 | (916,923) | 76.3% |
Natural Gas | 132,674,207 | 137,397,814 | (4,723,607) | 3.6% | 138,789,663 | (6,115,455) | 4.6% |
Other Gas | 7,063,985 | 6,653,028 | 410,957 | −5.8% | 6,921,261 | 142,724 | −2.0% |
Total | 349,609,366 | 346,836,173 | 2,773,193 | −0.8% | 341,610,111 | 7,999,254 | −2.3% |
Source: PJM Systems Mix [2] |
Fuel switching from coal to natural gas would most likely have occurred even if no wind and solar power were available. Natural gas has about 60% lower emissions than coal for each MWh produced. Some of that fuel switching was caused by lower natural gas fuel prices, and part was simply replacing closed coal- fired power plants. As generation at coal plants falls the plants become less efficient actually increasing emissions per MWh as shown in Chart 1 below. Coal plants were not designed for frequent stops and starts and doing so can more than double emissions per MWh of production. Calculating from PJM Systems Mix data shows coal emissions grew 3.4%/MWh. Without that increase the actual total emission reduction may have fallen 2.3% instead of 0.8%.
Solar and wind generation increased about 30%, or by 8.1 million MWhs. Nuclear power fell 6.3 million MWhs with 85% of that decrease related to the closing of the last unit at Three Mile Island. If you have been following the news many nuclear power plants are in financial trouble [3] and some plants are closing. Nuclear power generation has to be continuous as there is limited ability to ramp a plant up and down so those plants largely follow prices set by other generation sources. Federal tax credits for wind power of over $20/MWh [4] are awarded based on the amount of power generated and were close to the PJM average wholesale energy price for 2021 of $30.84/MWh [5]. So wind projects will bid low or even negative prices sometimes to reap those tax credits and nuclear plants follow even when losing money. Hydropower is very flexible and can be ramped down if the prices go too low.

Chart 1: CO₂ Emissions versus Annual Generation.
Source: RGGI, Inc.: RGGI COATS Platform
There is more to the story. Electric demand and supply must be in absolute balance every second or there are brownouts and blackouts. To keep everything in balance PJM can call on fast reacting oil and natural gas-fired generators known as peaking generators. They meet the demand but are less efficient than regular equipment and increase emissions. The tables shows a large increase in oil-fired generation, and emissions. That increase is likely a direct result of wind and solar power ramping up and down as the wind and sunlight stopped or slowed. Without that extra peaking plant operation total PJM emissions may have fallen another 0.2%.
This lack of CO₂ reduction by wind and solar comes at a high cost. Tax payers and electric customers provide expensive subsidies totaling almost $2 billion in the 2020-21 period, or $1 billion a year;
- Besides selling power into the competitive PJM market wind generation receives $18 to 23/MWh [4] in federal Production Tax Credits paid by taxpayers depending on the year built for an average of $20.50/MWh. With 54 million MWh produced in 2020 and 2021 [2] the total cost was $1,107 million.
- PJM reports [6] show from 6/1/2019 to June 1/2021, 1,077 MW of new solar capacity was added. Reports from the Solar Energy Industry Association [7] indicate the average installed cost of utility scale solar with tracking over that period was $0.96/Watt for a total investment of $1,034 million. Solar projects received a 26% federal Investment Tax Credit[5] from taxpayers, or $269 million.
- Four states (NJ, DE, MD, VA) participated in the Regional Greenhouse Gas Initiative that requires carbon based generators to buy allowances to emit CO₂. The cost gets passed on in electric bills. For example Virginia, the only one of the four states with integrated generation and distribution, received $228 million8 in RGGI taxes in 2021. Dominion Energy passed on $6.67/MWh to ratepayers, or about $80/year. In deregulated states the RGGI cost ($434 million[8] in 2020-21) are passed on indirectly in higher average PJM energy prices.
In summary, the minor reduction in emissions occurred because lower emission natural gas replaced coal. The emissions reduction might have been as much as 2.5% instead of 0.9%. Increased reliance on intermittent wind and solar power increased the use of inefficient peaking power plants, and as generation volume at coal plants fell they became less efficient. Increases in wind and solar generation offset zero emission nuclear and hydro generation (84% of increase), with the balance going to higher overall PJM generation. The conclusion is wind and solar power are not yielding lower carbon dioxide emissions, but are adding $1 billion a year in costs. Without lower emissions why are we mandating and subsidizing wind and solar power?
References:
1) Union of Concerned Scientists, “Environmental impacts of wind power”, https://www.ucsusa.org/resources/environmental-impacts-wind-power
2) PJM Systems Mix, https://gats.pjm-eis.com/gats2/PublicReports/PJMSystemMix
3) Institute for Energy Research, “Wind PTC threatens grid reliability”, https://www.instituteforenergyresearch.org/renewable/wind/wind-ptc-threatens-grid-reliability/
4) US EIA, Higher renewable capacity additions in AEO2016 reflect policy changes and cost reductions, https://www.eia.gov/todayinenergy/detail.php?id=26492 and Wind production tax credit extended to 2021, https://www.eia.gov/todayinenergy/detail.php?id=46576
5) PJM 2021 Markets Report, page 5, https://pjm.com/-/media/committees-groups/committees/mc/2021/20210503/20210503-item-07b-1-2021-annual-meeting-markets-report.ashx
6) PJM Capacity by Fuel Type, https://www.pjm.com/-/media/markets-ops/ops-analysis/capacity-by-fuel-type-2021.ashx and https://www.pjm.com/-/media/markets-ops/ops-analysis/capacity-by-fuel-type-2019.ashx
7) Solar Energy Industry Association, Solar Market Insight Report 2021 Q4, https://www.seia.org/research-resources/solar-market-insight-report-2021-q4
8) RGGI, Inc., Auction Results, https://www.rggi.org/auctions/auction-results
9) Caesar Rodney Institute, “Virginia your green new price tag is showing”
—5/17/2022
David T. Stevenson, Director
Caesar Rodney Institute Center for Energy and Environment
Download original document: “New evidence renewables don’t reduce carbon dioxide emissions”
Connecticut, Delaware, Economics, Emissions, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, Vermont •


Review of the Regional Greenhouse Gas Initiative
Author: Stevenson, David
The nearly decade-old Regional Greenhouse Gas Initiative (RGGI) was always meant to be a model for a national program to reduce power plant carbon dioxide (CO₂) emissions. The Environmental Protection Agency (EPA) explicitly cited it in this fashion in its now-stayed Clean Power Plan. Although the RGGI is often called a “cap and trade” program, its effect is the same as a direct tax or fee on emissions because RGGI allowance costs are passed on from electric generators to distribution companies to consumers. More recently, an influential group of former cabinet officials, known as the “Climate Leadership Council,” has recommended a direct tax on CO₂; emissions (Shultz and Summers 2017).
Positive RGGI program reviews have been from RGGI, Inc. (the program administrator) and the Acadia Center, which advocates for reduced emissions (see Stutt, Shattuck, and Kumar 2015). In this article, I investigate whether reported reductions in CO₂ emissions from electric power plants, along with associated gains in health benefits and other claims, were actually achieved by the RGGI program. Based on my findings, any form of carbon tax is not the policy to accomplish emission reductions. The key results are:
- There were no added emissions reductions or associated health benefits from the RGGI program.
- Spending of RGGI revenue on energy efficiency, wind, solar power, and low-income fuel assistance had minimal impact.
- RGGI allowance costs added to already high regional electric bills. The combined pricing impact resulted in a 13 percent drop in goods production and a 35 percent drop in the production of energy intensive goods. Comparison states increased goods production by 15 percent and only lost 4 percent of energy intensive manufacturing. Power imports from other states increased from 8 percent to 17 percent.
David Stevenson is Director of the Center for Energy Competitiveness at the Caesar Rodney Institute. He prepared this working paper for Cato’s Center for the Study of Science.
Download original document: “A Review of the Regional Greenhouse Gas Initiative”
Geographic origins and population genetics of bats killed at wind-energy facilities
Author: Pylant, Cortney; et al.
Abstract:
An unanticipated impact of wind-energy development has been large-scale mortality of insectivorous bats. In eastern North America, where mortality rates are among the highest in the world, the hoary bat (Lasiurus cinereus) and the eastern red bat (L. borealis) comprise the majority of turbine-associated bat mortality. Both species are migratory tree bats with widespread distributions; however, little is known regarding the geographic origins of bats killed at wind-energy facilities or the diversity and population structure of affected species. We addressed these unknowns by measuring stable hydrogen isotope ratios (δ²H) and conducting population genetic analyses of bats killed at wind-energy facilities in the central Appalachian Mountains (USA) to determine the summering origins, effective size, structure, and temporal stability of populations. Our results indicate that ~1% of hoary bat mortalities and ~57% of red bat mortalities derive from non-local sources, with no relationship between the proportion of non-local bats and sex, location of mortality, or month of mortality. Additionally, our data indicate that hoary bats in our sample consist of an unstructured population with a small effective size (Ne) and either a stable or declining history. Red bats also showed no evidence of population genetic structure, but in contrast to hoary bats, the diversity contained in our red bat samples is consistent with a much larger Ne, that reflects a demographic expansion after a bottleneck. These results suggest that the impacts of mortality associated with intensive wind-energy development may affect bat species dissimilarly, with red bats potentially better able to absorb sustained mortality than hoary bats because of their larger Ne. Our results provide important baseline data and also illustrate the utility of stable isotopes and population genetics for monitoring bat populations affected by wind-energy development.
Cortney L. Pylant, David M. Nelson, Matthew C. Fitzpatrick, J. Edward Gates, and Stephen R. Keller
University of Maryland Center for Environmental Science, Appalachian Laboratory, Frostburg, MD; Department of Biology, Frostburg State University, Frostburg, MD; and Department of Plant Biology, University of Vermont, Burlington, VT
Ecological Applications, Volume 26, Issue 5, July 2016, Pages 1381–1395
doi: 10.1890/15-0541
Download original document: “Geographic origins and population genetics of bats killed at wind-energy facilities”
Save Western Maryland Sues Constellation Energy for Violation of the Endangered Species Act
Author: Connaughton, Kimberly
Save Western Maryland filed a federal lawsuit against Constellation Energy Group and their affiliate for violation of the Endangered Species Act, due to Constellation’s intrusive installation and operation of an industrial wind power facility on the ridgetop of Backbone Mountain which will result in the killing, injury and other forms of harm to the endangered Indiana Bat.
The Indiana bat is one of the most imperiled land mammals in the world. Invaluable members of their ecosystems for their insect control capabilities, they are characterized by scientists as a keystone species. Wind turbines pose a grave threat to Indiana bats in terms of collisions and barotrauma – a bloody explosion of the lungs of bats caused by passage through the low pressure zones created by the movement of the huge turbine blades.
The lawsuit is a result of Constellation’s failure to follow the well established procedure to acquire an Incidental Take Permit, which would allow bats to be killed but avoid liability under the Endangered Species Act. Constellation has been aware of the presence of the Indiana bats at the site for years. Indiana bats are known to inhabit numerous caves in the vicinity of the wind plant, including the John Friend Cave near Sang Run.
Save Western Maryland is joined on the complaint by the Maryland Conservation Council, Ajax Eastman and D. Daniel Boone. The plaintiffs are represented by Moylan and Moylan of Baltimore.
[press release, Dec. 22, 2010]
Dowload original document: “Complaint under the Endangered Species Act”