[ posts only (not attachments) ]

ISSUES/LOCATIONS

View titles only
(by date)
List all documents, ordered…

By Title

By Author

View PDF, DOC, PPT, and XLS files on line
RSS

Add NWW documents to your site (click here)

Sign up for daily updates

Keep Wind Watch online and independent!

Donate $10

Donate $5

News Watch

Selected Documents

Research Links

Alerts

Press Releases

FAQs

Publications & Products

Photos & Graphics

Videos

Allied Groups

Resource Documents: U.S. (141 items)

RSSU.S.

Documents presented here are not the product of nor are they necessarily endorsed by National Wind Watch. These resource documents are provided to assist anyone wishing to research the issue of industrial wind power and the impacts of its development. The information should be evaluated by each reader to come to their own conclusions about the many areas of debate.


Date added:  June 13, 2018
Environment, New YorkPrint storyE-mail story

Mad River Wind Farm Impact Assessment Study in the Tug Hill Region of New York State

Author:  Newman, David; and Fisher, Brian

Abstract: Atlantic Wind, LLC, a subsidiary of the renewable energy company Avangrid Renewables of Portland Oregon, is proposing to construct a state-of-the-art large-scale wind turbine energy farm (LSWF) of approximately 88 Gamesa G-132 wind turbines in the heart of the rural Tug Hill region at the intersection of Jefferson, Lewis and Oswego counties in upstate New York. The proposal, entitled the “Mad River Wind Farm,” would have a nameplate capacity generate [electricity at a rate of] up to 350 MW (megawatts, or million watts), enough to provide power for 60,000 typical households over the course of the 20-30 year life span of the project (however, the actual power produced may be substantially less). The project is to be sited under a new, unified review and approval process for electrical facilities generating in excess of 25 MW, according to provisions of Art. 10 of the NYS Public Service Law. Traditionally, forested landscapes were considered as “no-go” locations for siting LSWFs, [owing] to their inaccessibility and problems with airflow turbulence in potentially uneven forested canopies. However, as technology has improved and turbines have increased in height (400 to 600+ feet), forests are receiving new attention as large-scale landscapes to site wind farms. Only a handful of LSWFs have been constructed in forested landscapes in the US. While wind farms are often considered as beneficial, renewable forms of “green energy” and are increasingly favored by the environmental community for their important contributions to sustainable energy development and reductions in greenhouse gas emissions, they may not always have benign impacts to the environment where they are sited. This white paper, prepared for the Tug Hill Tomorrow Land Trust, examines the potential ecological and environmental impacts from the proposed Mad River project, and focuses on direct and indirect impacts from both the construction and operational phases of the project.

The bio-physical ecological impacts addressed include:

among others.

Prepared for Tug Hill Tomorrow Land Trust by Dr. David H. Newman (Principal Investigator), and Prof. Brian L. Fisher, M.S. (PhD Student; Primary Author), Department of Forest and Natural Resources Management, College of Environmental Science and Forestry, State University of New York, Syracuse, April 2018

Download original document: “Mad River Wind Farm Impact Assessment Study in the Tug Hill Region of New York State

Bookmark and Share


Date added:  May 4, 2018
New YorkPrint storyE-mail story

KTYX Wind Farm Impacts

Author:  National Weather ServiceNational Weather Service

There are 4 National Weather Service (NWS) offices that use the Fort Drum KTYX radar to accomplish their mission of protection of life and property in the nearby counties. These offices are: NWS Albany, NWS Buffalo, NWS Binghamton, NWS Burlington.

NWS Albany Impacts:

NWS Buffalo Impacts:

NWS Binghamton Impacts:

NWS Burlington Impacts:

Bookmark and Share


Date added:  May 3, 2018
Emissions, Grid, U.S.Print storyE-mail story

Marginal Emissions Factors for Electricity Generation in the Midcontinent ISO

Author:  Thind, Maninder; et al.

Abstract.
Environmental consequences of electricity generation are often determined using average emission factors. However, as different interventions are incrementally pursued in electricity systems, the resulting marginal change in emissions may differ from what one would predict based on system-average conditions. Here, we estimate average emission factors and marginal emission factors for CO₂, SO₂, and NOx from fossil and nonfossil generators in the Midcontinent Independent System Operator (MISO) region during years 2007–2016. We analyze multiple spatial scales (all MISO; each of the 11 MISO states; each utility; each generator) and use MISO data to characterize differences between the two emission factors (average; marginal). We also explore temporal trends in emissions factors by hour, day, month, and year, as well as the differences that arise from including only fossil generators versus total generation. We find, for example, that marginal emission factors are generally higher during late-night and early morning compared to afternoons. Overall, in MISO, average emission factors are generally higher than marginal estimates (typical difference: ∼20%). This means that the true environmental benefit of an energy efficiency program may be ∼20% smaller than anticipated if one were to use average emissions factors. Our analysis can usefully be extended to other regions to support effective near-term technical, policy and investment decisions based on marginal rather than only average emission factors.

Maninder P. S. Thind and Julian D. Marshall, Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington
Elizabeth J. Wilson, Humphrey School of Public Affairs, University of Minnesota, Minneapolis, and Environmental Studies, Dartmouth College, Hanover, New Hampshire
Inês L. Azevedo, Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, Pennsylvania

Environmental Science and Technology, 2017, 51 (24), pp 14445–14452
DOI: 10.1021/acs.est.7b03047

Download original document: “Marginal Emissions Factors for Electricity Generation in the Midcontinent ISO

Bookmark and Share


Date added:  May 2, 2018
Emissions, Grid, U.S.Print storyE-mail story

Bulk Energy Storage Increases United States Electricity System Emissions

Author:  Hittinger, Eric; and Azevedo, Inês

Abstract.
Bulk energy storage is generally considered an important contributor for the transition toward a more flexible and sustainable electricity system. Although economically valuable, storage is not fundamentally a “green” technology, leading to reductions in emissions. We model the economic and emissions effects of bulk energy storage providing an energy arbitrage service. We calculate the profits under two scenarios (perfect and imperfect information about future electricity prices), and estimate the effect of bulk storage on net emissions of CO₂, SO₂, and NOx for 20 eGRID subregions in the United States. We find that net system CO₂ emissions resulting from storage operation are nontrivial when compared to the emissions from electricity generation, ranging from 104 to 407 kg/MWh of delivered energy depending on location, storage operation mode, and assumptions regarding carbon intensity. Net NOx emissions range from −0.16 (i.e., producing net savings) to 0.49 kg/MWh, and are generally small when compared to average generation-related emissions. Net SO₂ emissions from storage operation range from −0.01 to 1.7 kg/MWh, depending on location and storage operation mode.

Eric S. Hittinger, Department of Public Policy, Rochester Institute of Technology, Rochester, New York
Inês M. L. Azevedo, Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, Pennsylvania

Environmental Science and Technology, 2015, 49 (5), pp 3203–3210
DOI: 10.1021/es505027p

Download original document: “Bulk Energy Storage Increases United States Electricity System Emissions

Bookmark and Share


Earlier Documents »

Get the Facts Follow Wind Watch on Twitter

Wind Watch on Facebook

Share

CONTACT DONATE PRIVACY ABOUT SEARCH
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.
Share

Wind Watch on Facebook

Follow Wind Watch on Twitter