[ posts only (not attachments) ]

ISSUES/LOCATIONS

View titles only
(by date)
List all documents, ordered…

By Title

By Author

View PDF, DOC, PPT, and XLS files on line
RSS

Add NWW documents to your site (click here)

Sign up for daily updates

Keep Wind Watch online and independent!

Donate $10

Donate $5

News Watch

Selected Documents

Research Links

Alerts

Press Releases

FAQs

Publications & Products

Photos & Graphics

Videos

Allied Groups

Resource Documents: Vermont (40 items)

RSSVermont

Documents presented here are not the product of nor are they necessarily endorsed by National Wind Watch. These resource documents are provided to assist anyone wishing to research the issue of industrial wind power and the impacts of its development. The information should be evaluated by each reader to come to their own conclusions about the many areas of debate.


Review of the Regional Greenhouse Gas Initiative

Author:  Stevenson, David

The nearly decade-old Regional Greenhouse Gas Initiative (RGGI) was always meant to be a model for a national program to reduce power plant carbon dioxide (CO₂) emissions. The Environmental Protection Agency (EPA) explicitly cited it in this fashion in its now-stayed Clean Power Plan. Although the RGGI is often called a “cap and trade” program, its effect is the same as a direct tax or fee on emissions because RGGI allowance costs are passed on from electric generators to distribution companies to consumers. More recently, an influential group of former cabinet officials, known as the “Climate Leadership Council,” has recommended a direct tax on CO₂; emissions (Shultz and Summers 2017).

Positive RGGI program reviews have been from RGGI, Inc. (the program administrator) and the Acadia Center, which advocates for reduced emissions (see Stutt, Shattuck, and Kumar 2015). In this article, I investigate whether reported reductions in CO₂ emissions from electric power plants, along with associated gains in health benefits and other claims, were actually achieved by the RGGI program. Based on my findings, any form of carbon tax is not the policy to accomplish emission reductions. The key results are:

David Stevenson is Director of the Center for Energy Competitiveness at the Caesar Rodney Institute. He prepared this working paper for Cato’s Center for the Study of Science.

Download original document: “A Review of the Regional Greenhouse Gas Initiative

Bookmark and Share


Date added:  May 30, 2017
Health, Noise, VermontPrint storyE-mail story

Wind Turbine Noise and Human Health: A Review of the Scientific Literature

Author:  Vermont Department of Health

Summary. Since 1997, 67 utility scale wind turbines with 149 megawatts of capacity have been installed at five locations in Vermont: Searsburg, Deerfield, Georgia, Lowell, and Sheffield. The Vermont Department of Health reviewed recent scientific publications to better understand whether wind turbine noise poses a risk to public health. The Department’s findings are summarized below.

  1. At noise levels studied, there was no evidence of a direct effect of wind turbine noise on any of the health outcomes considered.
  2. As wind turbine noise levels increase, the proportion of community members reporting that they are highly annoyed by the wind turbine noise also increases.
  3. Although wind turbine noise itself was not associated with any direct health effect, annoyance attributed to wind turbine noise by respondents was associated with migraines, dizziness, tinnitus, chronic pain, hair cortisol concentrations (an indicator of stress), blood pressure, and self-reported sleep quality.
  4. Efforts to minimize annoyance should address both noise and non-noise related factors. In order to minimize annoyance attributed to noise, an annual limit of 35 dBA coupled with community engagement could be considered. Community engagement could help to address prior attitudes toward wind turbine development, identify vulnerable populations and address concerns about visual annoyance (for example blinking aircraft warning lights), physical safety, and equitable distribution of economic benefits.

Download original document: “Wind Turbine Noise & Human Health: A Review of the Scientific Literature

Bookmark and Share


Date added:  April 21, 2017
Vermont, WildlifePrint storyE-mail story

Reducing bat fatalities at wind facilities while improving the economic efficiency of operational mitigation

Author:  Martin, Colleen; Arnett, Edward; Stevens, Richard; and Wallace, Mark

Abstract:
Concerns about cumulative population-level effects of bat fatalities at wind facilities have led to mitigation strategies to reduce turbine-related bat mortality. Operational mitigation that limits operation may reduce fatalities but also limits energy production. We incorporated both temperature and wind speed into an operational mitigation design fine-tuned to conditions when bats are most active in order to improve economic efficiency of mitigation. We conducted a 2-year study at the Sheffield Wind Facility in Sheffield, Vermont. Activity of bats is highest when winds speeds are low (< 6.0 m/s) and, in our region, when temperatures are above 9.5°C. We tested for a reduction in bat mortality when cut-in speed at treatment turbines was raised from 4.0 to 6.0 m/s whenever nightly wind speeds were < 6.0 m/s and temperatures were > 9.5°C. Mortalities at fully operational turbines were 1.52–4.45 times higher than at treatment turbines. During late spring and early fall, when overnight temperatures generally fell below 9.5°C, incorporating temperature into the operational mitigation design decreased energy losses by 18%. Energy lost from implementation of our design was < 3% for the study season and approximately 1% for the entire year. We recommend that operational mitigation be implemented during high-risk periods to minimize bat fatalities and reduce the probability of long-term population-level effects on bats.

Colleen M. Martin
Richard D. Stevens
Mark C. Wallace
Department of Natural Resources Management, Texas Tech University, Lubbock
Edward B. Arnett
Theodore Roosevelt Conservation Partnership, Loveland, Colorado

Published: 10 March 2017
Journal of Mammalogy (2017) 98 (2): 378-385.
DOI: 10.1093/jmammal/gyx005

Download original document: “Reducing bat fatalities at wind facilities while improving the economic efficiency of operational mitigation

Bookmark and Share


Date added:  March 15, 2017
Noise, Regulations, VermontPrint storyE-mail story

Proposal and comments for implementing a rule regarding sound from wind generation projects

Author:  Ambrose, Stephen

There is an unsaid purpose and intent for this request [from the Vermont Public Service Board (PSB)]. Might it be an acknowledgement that “Vermont’s wind turbine noise rule does not protect neighbors from excessive noise and adverse health impacts”? This is obviously due to persistent complaints, and at least one home abandonment. This solicitation for public comments should not be used to divert-delay-deny public attention. Wind turbine neighbors want the PSB to correct the current flawed regulations based on accepting for regulatory rules those the wind industry recommends. If the PSB sought advice from truly independent sources they would have learned that 45 dBA is only applicable for urban-residential areas and even for those communities is not sufficient to protect people. Ontario, and other Canadian provinces have regulations setting 40 dBA as the not-to-exceed threshold. Yet, recent studies have shown strong evidence that 40 dBA is not preventing adverse health impacts. Even 40 dBA is too loud. Somehow the cautionary warnings of the 1970s about 35 dBA for quiet rural-residential environments have been ignored. Standards such as ISO 1996 and ANSI’s S12.9 still support 35 dBA for nighttime noise in quiet rural regions.

The noise rule needs a large scale reduction in its permitted noise limits to protect and minimize noise complaints. Anything less will only continue the endless discussions for equivocating with fudging, quibbling, and evading the need to lower to 35 dBA. Adding superfluous and complicated measurements, procedures or protocols around the 45 dBA will only continue to result in failure. The PSB should understand this after receiving reams of unfathomable data from acousticians closely aligned with developers that has no connection to a human response.

The PSB should seek assistance from independent experts to establish a noise rule that minimizes adverse human responses. This noise limit must be easy to understand and enforce. The PSB should not have to deal with the intricacies of acoustic science, noise sources, propagation, and weather. These are the concerns for the noise consultants who are responsible to their wind developer clients, who need to advise their clients on how not to harm the public. The PSB should focus on public health and enforcing compliance; and not be negotiating mitigating options with developers, operators, or consultants.

The current wind turbine sound rule should be abandoned and replaced with the previous noise limits. The Environmental Board used Lmax for its regulations and that has been upheld by the Vermont Supreme Court (see page 11). The Lmax refers to the instantaneous maximum level (LAmax) relative to the background (LA90). People hear the instantaneous variations above the background and respond accordingly, which cannot be substituted with a time-weighted average. Adverse public reactions are shown to occur when the Lmax exceeds the background L90 by 10 dB.

Answers for most of the questions start on the next page …

Download original document: “Proposal and comments for implementing a rule regarding sound from wind generation projects

See also:  Vermont Public Service Board Sound Rule Workshop (presentation)

Bookmark and Share


Earlier Documents »

Get the Facts Follow Wind Watch on Twitter

Wind Watch on Facebook

Share

CONTACT DONATE PRIVACY ABOUT SEARCH
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.
Share

Wind Watch on Facebook

Follow Wind Watch on Twitter