Resource Documents: North Dakota (7 items)
Unless indicated otherwise, documents presented here are not the product of nor are they necessarily endorsed by National Wind Watch. These resource documents are shared here to assist anyone wishing to research the issue of industrial wind power and the impacts of its development. The information should be evaluated by each reader to come to their own conclusions about the many areas of debate. • The copyrights reside with the sources indicated. As part of its noncommercial effort to present the environmental, social, scientific, and economic issues of large-scale wind power development to a global audience seeking such information, National Wind Watch endeavors to observe “fair use” as provided for in section 107 of U.S. Copyright Law and similar “fair dealing” provisions of the copyright laws of other nations.
Sharp Hills Wind Farm: Assessment by Delta Waterfowl
Author: Petrie, Scott; and Chouinard, Matt
As per your letter of engagement dated March 2, 2018, Delta Waterfowl has provided an assessment of the potential impacts of the Sharp Hills Wind Farm (SHWF) on breeding and migrating/staging (hereafter staging) waterfowl. We have reviewed all of the documents that you provided and have mapped the locations and extent of the proposed industrial wind development (Figure 1), proposed industrial wind turbine (IWT) locations in relation to wetlands in the region (Figure 2), breeding waterfowl densities (Figure 3), land-cover types (Figure 4), and a figure showing the waterfowl exclusion zones, avoidance zones (based on European literature – see below) and potential barrier effects if the proposed IWTs are constructed (Figure 5).
Based on our assessment, we have concerns that the proposed wind farm will adversely impact a number of avian (displacement and direct mortality) and bat (mortality) species. Unlike many species of passerines, birds of prey and bats that are killed by IWTs, waterfowl generally avoid industrial wind developments (Larsen and Madsen 2000; Desholm and Kahlert 2005, Stewart et al. 2005, Larsen and Guillemette 2007, Masden et al. 2009, Fijn et al. 2012, Rees 2012) which is problematic when IWTs are placed in and close to important waterfowl habitats, and/or across migratory or feeding flight corridors. This review pertains to the potential barrier effects and habitat loss (due to avoidance) that would be imposed on ducks, geese and swans if the proposed IWT development was constructed. It is our professional opinion that if the proposed industrial wind development is constructed, it will adversely impact breeding as well as spring and fall staging waterfowl. …
Scott Petrie, Ph.D., CEO, Delta Waterfowl
Matt Chouinard, M.Sc., Senior Waterfowl Programs Manager, Delta Waterfowl
12 April, 2018
Download original document: “Sharp Hills Wind Farm: Assessment by Delta Waterfowl”
Assessing Spring Direct Mortality to Avifauna from Wind Energy Facilities in the Dakotas
Author: Graff, Brianna; et al.
ABSTRACT: The Northern Great Plains (NGP) contains much of the remaining temperate grasslands, an ecosystem that is one of the most converted and least protected in the world. Within the NGP, the Prairie Pothole Region (PPR) provides important habitat for >50% of North America’s breeding waterfowl and many species of shorebirds, waterbirds, and grassland songbirds. This region also has high wind energy potential, but the effects of wind energy developments on migratory and resident bird and bat populations in the NGP remains understudied. This is troubling considering >2,200 wind turbines are actively generating power in the region and numerous wind energy projects have been proposed for development in the future. Our objectives were to estimate avian and bat fatality rates for wind turbines situated in cropland- and grassland-dominated landscapes, document species at high risk to direct mortality, and assess the influence of habitat variables on waterfowl mortality at 2 wind farms in the NGP. From 10 March to 7 June 2013–2014, we completed 2,398 searches around turbines for carcasses at the Tatanka Wind Farm (TAWF) and the Edgeley-Kulm Wind Farm (EKWF) in South Dakota and North Dakota. During spring, we found 92 turbine-related mortalities comprising 33 species and documented a greater diversity of species (n = 30) killed at TAWF (predominately grassland) than at EKWF (n = 9; predominately agricultural fields). After accounting for detection rates, we estimated spring mortality of 1.86 (SE = 0.22) deaths/megawatt (MW) at TAWF and 2.55 (SE = 0.51) deaths/MW at EKWF. Waterfowl spring (Mar–Jun) fatality rates were 0.79 (SE = 0.11) and 0.91 (SE = 0.10) deaths/MW at TAWF and EKWF, respectively. Our results suggest that future wind facility siting decisions consider avoiding grassland habitats and locate turbines in preexisting fragmented and converted habitat outside of high densities of breeding waterfowl and major migration corridors.
BRIANNA J. GRAFF, JONATHAN A. JENKS, JOSHUA D. STAFFORD, KENT C. JENSEN, and TROY W. GROVENBURG
Department of Natural Resource Management, South Dakota State University, and South Dakota Cooperative Fish and Wildlife Research Unit, US Geological Survey, Brookings, SD, USA
The Journal of Wildlife Management 80(4):736–745; 2016; DOI: 10.1002/jwmg.1051
Download original document: “Assessing Spring Direct Mortality to Avifauna from Wind Energy Facilities in the Dakotas”
Effects of wind-energy facilities on breeding grassland bird distributions
Author: Shaffer, Jill; and Buhl, Deborah
Abstract: The contribution of renewable energy to meet worldwide demand continues to grow. Wind energy is one of the fastest growing renewable sectors, but new wind facilities are often placed in prime wildlife habitat. Long-term studies that incorporate a rigorous statistical design to evaluate the effects of wind facilities on wildlife are rare. We conducted a before-after-control-impact (BACI) assessment to determine if wind facilities placed in native mixed-grass prairies displaced breeding grassland birds. During 2003–2012, we monitored changes in bird density in 3 study areas in North Dakota and South Dakota (U.S.A.). We examined whether displacement or attraction occurred 1 year after construction (immediate effect) and the average displacement or attraction 2–5 years after construction (delayed effect). We tested for these effects overall and within distance bands of 100, 200, 300, and >300 m from turbines. We observed displacement for 7 of 9 species. One species was unaffected by wind facilities and one species exhibited attraction. Displacement and attraction generally occurred within 100 m and often extended up to 300 m. In a few instances, displacement extended beyond 300 m. Displacement and attraction occurred 1 year after construction and persisted at least 5 years. Our research provides a framework for applying a BACI design to displacement studies and highlights the erroneous conclusions that can be made without the benefit of adopting such a design. More broadly, species-specific behaviors can be used to inform management decisions about turbine placement and the potential impact to individual species. Additionally, the avoidance distance metrics we estimated can facilitate future development of models evaluating impacts of wind facilities under differing land-use scenarios.
Efectos de las Instalaciones de Energía Eólica sobre la Distribución de las Aves de Pastizales en época Reproductiva
Resumen: La contribución de la energía renovable para cumplir con las demandas mundiales sigue creciendo. La energía eólica es uno de los sectores renovables con mayor crecimiento, pero continuamente se colocan nuevas instalaciones eólicas en los principales hábitats de fauna silvestre. Los estudios a largo plazo que incorporan un diseño estadístico riguroso para evaluar los efectos de estas instalaciones sobre la fauna son escasos. Realizamos una evaluación de control de impacto de antes y después (CIAD) para determinar si las instalaciones eólicas colocadas en praderas de pastos mixtos nativos desplazaron a las aves de pastizales en época reproductiva. Durante el periodo 2003-2012, monitoreamos los cambios en la densidad de aves en tres áreas de estudio en Dakota del Norte y del Sur (E.U.A). Examinamos si había ocurrido desplazamiento o atracción un año después de la construcción (efecto inmediato) y también el promedio de desplazamiento o atracción 2-5 años después de la construcción (efecto retardado). Analizamos estos efectos en general y dentro de franjas de distancia de 100, 200, 300 y >300 m de las turbinas. Observamos desplazamiento en siete de las nueve especies. Una especie no fue afectada por las instalaciones eólicas y una especie mostró atracción. El desplazamiento y la atracción ocurrieron generalmente dentro de los 100 m y frecuentemente se extendieron hasta los 300 m. En algunos casos, el desplazamiento se extendió más allá de los 300 m. El desplazamiento y la atracción ocurrieron un año después de la construcción y continuaron durante por lo menos cinco años. Nuestra investigación proporciona un marco de trabajo para aplicar el diseño CIAD a los estudios de desplazamiento y resalta las conclusiones erróneas que pueden hacerse sin el beneficio de adoptar dicho diseño. En términos más generales, los comportamientos específicos de especie pueden usarse para informar a las decisiones de manejo sobre la colocación de turbinas y el impacto potencial para las especies individuales. Además, las medidas de distancia de evitación que estimamos pueden facilitar el desarrollo futuro de los modelos de evaluación de impacto de las instalaciones eólicas bajo escenarios diferentes de uso de suelo.
Jill A. Shaffer and Deborah A. Buhl
U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND, USA
Conservation Biology, Volume 30, No. 1, 59–71
Published 2015. This article is a US Government work and is in the public domain in the USA.
DOI: 10.1111/cobi.12569
Download original document: “Effects of wind-energy facilities on breeding grassland bird distributions”
Construction of Xcel Energy’s Courtenay Wind Farm, North Dakota
Author: Xcel Energy
Download video (52-MB MP4)
- 100 Vestas V100 2-MW turbines
- Nearly 25,000 acres (101 km²)
- 22 miles of access roads
- Substation transformer: 262,000 pounds
- Substation increases voltage for transmission lines
- 17.1-mile 115-kV overhead transmission line from collection substation to interconnect substation
- More than 150 miles of underground cable in 50 miles of trench
- Tower base (platform) excavation depth: 9 feet
- 360 cubic yards of concrete, 28 tons of reinforcing steel
- Tower base (bottom third): 96,000 pounds, 128 anchor bolts
- Nacelle: 163,650 pounds
- Hub height: 262 feet
- Turbine blade: length 161 feet, weight 17,000 pounds
- Total height: 426 feet
- Blade diameter: 328 feet
- Blade sweep area: 1.94 acres