[ posts only (not attachments) ]


View titles only
(by date)
List all documents, ordered…

By Title

By Author

View PDF, DOC, PPT, and XLS files on line

Add NWW documents to your site (click here)

Sign up for daily updates

Keep Wind Watch online and independent!

Donate $10

Donate $5

News Watch

Selected Documents

Research Links


Press Releases


Publications & Products

Photos & Graphics


Allied Groups

Resource Documents: Environment (243 items)


Unless indicated otherwise, documents presented here are not the product of nor are they necessarily endorsed by National Wind Watch. These resource documents are shared here to assist anyone wishing to research the issue of industrial wind power and the impacts of its development. The information should be evaluated by each reader to come to their own conclusions about the many areas of debate. • The copyrights reside with the sources indicated. As part of its noncommercial effort to present the environmental, social, scientific, and economic issues of large-scale wind power development to a global audience seeking such information, National Wind Watch endeavors to observe “fair use” as provided for in section 107 of U.S. Copyright Law and similar “fair dealing” provisions of the copyright laws of other nations.

Date added:  February 23, 2022
Environment, WildlifePrint storyE-mail story

Unravelling the ecological impacts of large-scale offshore wind farms in the Mediterranean Sea

Author:  Lloret, Josep; et al.


Abstract: The need for alternative energy systems like offshore wind power to move towards the Green Deal objectives is undeniable. However, it is also increasingly clear that biodiversity loss and climate change are interconnected issues that must be tackled in unison. In this paper we highlight that offshore wind farms (OWF) in the Mediterranean Sea (MS) pose serious environmental risks to the seabed and the biodiversity of many areas due to the particular ecological and socioeconomic characteristics and vulnerability of this semi-enclosed sea. The MS hosts a high diversity of species and habitats, many of which are threatened. Furthermore, valuable species, habitats, and seascapes for citizens’ health and well-being coexist with compounding effects of other economic activities (cruises, maritime transport, tourism activities, fisheries and aquaculture) in a busy space on a narrower continental shelf than in other European seas. We argue that simply importing the OWF models from the northern European seas, which are mostly based on large scale projects, to other seas like the Mediterranean is not straightforward. The risks of implementing these wind farms in the MS have not yet been well evaluated and, considering the Precautionary Principle incorporated into the Marine Strategy Framework Directive and the Maritime Spatial Planning Directive, they should not be ignored. We propose that OWF development in the MS should be excluded from high biodiversity areas containing sensitive and threatened species and habitats, particularly those situated inside or in the vicinity of Marine Protected Areas or areas with valuable seascapes. In the absence of a clearer and comprehensive EU planning of wind farms in the MS, the trade-off between the benefits (climate goals) and risks (environmental and socioeconomic impacts) of OWF could be unbalanced in favor of the risks.

Table 1. Summary of potential environmental effects of Offshore Wind Farms (construction, operation, and decommissioning stages combined) in the Mediterranean Sea translated into the 11 Good Environmental Status (GES) descriptors of the Marine Strategy Framework Directive.

GES descriptor Effects of the offshore wind farms References
#1. Biodiversity:
The quality and occurrence of habitats and the distribution and abundance of species are in line with prevailing physiographic, geographic and climatic conditions
Loss of fragile benthic marine and coastal habitats important for biodiversity, particularly in protected areas Gill, 2005; Perrow, 2019; ICES, 2021
Disturbance to sensitive and threatened species (birds, mammals, sea turtles and fish) due to piles, anchors and cables (including the effects of electromagnetic fields and artificial lights, and entanglement risks). The OWF may cause species injury or death, changes in their behavioural response (attraction to and avoidance of the turbines) and/or changes in habitat. Zettler and Pollehne, 2006; Vermeij et al., 2010; Benjamins et al., 2014; Bergström et al., 2014; Leopold et al., 2015; Goodale and Milman, 2016; WWF, 2014, WWF, 2019; Stanley et al., 2020; Hutchison et al., 2020; Taormina et al., 2020; De Jong et al., 2020; Jones et al., 2021; Anderson et al., 2021, Farr et al., 2021
As floating wind farms expand in size and increase in distance from the shore, longer and higher capacity subsea cables are required to interconnect facility components to each other, to the seafloor, and to the shore. This may increase the extent of electromagnetic fields in the water column and potentially interact with a great diversity of marine organisms. Benjamins et al., 2014; Farr et al., 2021.
For floating wind farms, midwater mooring lines and floating substructures may similarly act as fish aggregation devices and settlement surfaces for invertebrates and algae, thus altering species composition in pelagic communities. Additional concerns are the potential for marine mammal collision and entanglement with these mooring lines and subsea cables Benjamins et al., 2014; Farr et al., 2021.
Risk of accidents (associated with natural hazards, such as storms and extreme events, and wind turbine accidents, including fire, the aerogenerator itself falling into the sea and ship collisions) Biehl and Lehmann, 2006; Asian et al., 2017
Artificial reef effect: when wind farms are built in areas with homogenous seabeds, the installation of foundations and piles may provide space for settlement, shelter and foraging for some species (positive effect) ICES, 2008; Vaissière et al., 2014; Hammar et al., 2016; Degraer et al., 2020; Mavraki et al., 2021
Habitat destruction on nearshore and inland fragile areas (estuaries, coastal lagoons, large shallow inlets and bays, etc.) due to the building of new terrestrial/ coastal infrastructure This study
#2. Non-indigenous species:
Non-indigenous species introduced by human activities are at levels that do not adversely alter the ecosystems
New, artificial substrates favor the colonization of non-indigenous species Glasby et al., 2007; Duarte et al., 2013; De Mesel et al., 2015
#3. Commercial fish and shellfish:
Populations of all commercially exploited fish and shellfish are within safe biological limits, exhibiting a population age and size distribution that is indicative of a healthy stock
Effects on exploited species due to sound, vibrations and electromagnetic fields from cables Zettler and Pollehne, 2006; Bergström et al., 2014; Leopold et al., 2015; Hutchison et al., 2020
In the absence of fishing (usually forbidden within wind farms), biodiversity and the abundance of benthopelagic and benthic species using OWF for shelter and as feeding grounds may increase, with potential spillover effects (positive effect) Halouani et al., 2020; Degraer et al., 2020; Gill et al., 2020; Mavraki et al., 2021.
OWF will alter the dynamics (periodicity, access to areas occupied by wind farms) of scientific fishery resource surveys, thus affecting the stock assessment and management of fishery resources Methratta et al., 2020.
#4. Food webs:
All elements of the marine food webs, as far as they are known, occur at normal abundance and diversity and at levels capable of ensuring the long-term abundance of the species and the retention of their full reproductive capacity
Colonization by new (atypical) communities (sessile benthic species) that may modify food webs and biogeochemical cycling Wilhelmsson and Langhamer, 2014; Coolen et al., 2020; Dannheim et al., 2020
Increase of suspension feeders leading to changes in local primary production Slavik et al., 2019; Mavraki et al., 2020
#5. Eutrophication:
Human-induced eutrophication is minimised, and especially its adverse effects, such as biodiversity losses, ecosystem degradation, harmful algae blooms and oxygen deficiency in bottom waters
#6. Sea-floor integrity:
Sea-floor integrity is at a level that ensures that the structure and functions of the ecosystems are safeguarded and benthic ecosystems in particular are not adversely affected
Habitat alterations due to the installation and dismantling of pile foundations, cables, and anchors, the scour of the seabed, and the strumming of the cables Gill, 2005; Wilhelmsson and Langhamer, 2014; Slavik et al., 2019; Perrow, 2019; Degraer et al., 2020; Coolen et al., 2020; ICES, 2021
Floating OWF require mooring and anchoring systems consisting of heavy chains to keep their substructures stationary, and in some cases, the use of suction anchors that may require scour protection through rock dumping, affecting sea-floor integrity. Statoil, 2015; Defingou et al., 2019; Farr et al., 2021
#7. Hydrographical conditions:
Permanent alteration of hydrographical conditions does not adversely affect marine ecosystems
Changes in atmospheric and oceanic dynamics leading to alterations in local primary productivity and carbon flow to the benthos, and changes in larval transport pathways. Oceanographic processes that could be affected by offshore wind farms include downstream turbulence, surface wave energy, local scour, inflowing currents and surface upwelling. Christensen et al., 2013; Clark et al., 2014; Ludewig, 2015; Carpenter et al., 2016; Grashorn and Stanev, 2016; Floeter et al., 2017; van Berkel et al., 2020, Lampert et al., 2020; Dannheim et al., 2020; Gill et al., 2020; Akhtar et al., 2021
Turbulent mixing generated by turbine structures and wind reduction that can modify ocean vertical mixing and, in turn, stratification patterns Ludewig, 2015; van Berkel et al., 2020; Miles et al., 2020
While the floating OWF may initially have a smaller impact on the underwater hydrodynamics than a fixed OWF, the higher emerged structure (up to 250 m) could significantly modify the wind field This study
#8. Contaminants in the marine environment:
Contaminants are at a level not giving rise to pollution effects
Contamination from chemical emissions, including organic compounds such as bisphenol A and metals such as aluminum, zinc, and indium from corrosion and biofouling protection measures and sacrificial anodes Kirchgeorga et al., 2018; De Witte and Hostens, 2019; Farr et al., 2021
Pollution from the industrialization of the coastline, including the associated hydrogen plants GIZ, 2020; WindEurope, 2021, Khan et al., 2021
Pollution from accidents Biehl and Lehmann, 2006; Asian et al., 2017
Floating OWF may hold internal tanks that may contain both solid ballast and ballast water typically dosed with sodium hydroxide, a chemical compound that is toxic for aquatic organisms European Commission, 2007; Statoil, 2015
#9. Contaminants in seafood:
Contaminants in fish and other seafood for human consumption do not exceed levels established by Community legislation or other relevant standards
#10. Marine litter:
Properties and quantities of marine litter do not cause harm to the coastal and marine environment
#11. Energy, including Underwater Noise:
Introduction of energy, including underwater noise, is at levels that do not adversely affect the marine environment
Changes to water quality: increase in local water turbidity arising from suspended solids Gill, 2005; Perrow, 2019; ICES, 2021
Significant marine noise and vibration from turbines and mounting structures (including floating OWF, which require mooring and anchoring systems consisting of heavy chains to keep their substructures stationary) Gill, 2005 Statoil, 2015; Perrow, 2019; Defingou et al., 2019; Stanley et al., 2020; ICES, 2021; Jones et al., 2021; Farr et al., 2021
Emission of electromagnetic fields can affect electrosensitive species, such as marine mammals and bottom dwelling species (e.g., elasmobranchs and decapods) Zettler and Pollehne, 2006; Bergström et al., 2014; Leopold et al., 2015; Hutchison et al., 2020

Josep Lloret, Institute of Aquatic Ecology, University of Girona, Catalonia, Spain
Antonio Turiel, Elisa Berdalet, Ana Sabatés, Josep-Maria Gili, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
Jordi Solé, Department of Earth and Ocean Dynamics, University of Barcelona, Catalonia, Spain
Alberto Olivares, Rafael Sardá, Centre d’Estudis Avançats de Blanes (CSIC), Girona, Catalonia, Spain
Josep Vila-Subirós, Department of Geography, University of Girona, Catalonia, Spain

Science of The Total Environment, Volume 824, 10 June 2022, 153803

Unravelling the ecological impacts of large-scale offshore wind farms in the Mediterranean Sea

Bookmark and Share

Date added:  June 29, 2021
EnvironmentPrint storyE-mail story

Coastal and offshore based wind power may be a significant contributor of micro and nano sized particles containing BPA and other harmful chemicals to the environment through leading edge erosion

Author:  Green Warriors of Norway (Norges Miljøvernforbund)

Green Warriors of Norway/Norges Miljøvernforbund (NMF) raise several concerns regarding the increased use of Bisphenol A (BPA) and related chemicals and their impact on onshore and offshore environment and ecosystems. Much of the current and future impact will come from relatively new sources, and from sources that will increase in new areas and environments. One of the main sources of concern is from micro and nano sized particles released into the environment from epoxy-based products by erosion. Such particles that contain BPA related substances will protect its containing chemicals and protect them from degradation while they remain inside the particle materials, and like a Trojan Horse, be released into the food chain through organisms when in contact with their digestive system. It is also concerning that research show that BPA do generational harm to organisms according to a recent study of Rainbow trout.

These factors and more raise serious concerns as the development and placement of new installations reliant upon BPA containing epoxy structures reaches new frontiers with harsher and more challenging weather conditions. While chemicals like BPA in its pure form is degraded normally in a normal environment, salt water and colder temperatures in more arctic and sub-arctic environments will likely impact the rate of degradation significantly, which make them remain a potent biochemical pollutant for a much longer period than in more tempered environments. Within the protection of a micro-sized particle, they will remain a potent biochemical pollutant significantly longer than the chemical in its pure form.

With micro and nano sized particles found in larger and larger quantities on the farthest parts of the planet, from the furthest away glaciers to sediments on the deepest seabed, the concern is that our human impact on the various onshore and offshore environments accumulate and is irreversible.

We therefore need much stricter regulations and also serious incentives for the industry to find better alternatives and in the meantime stop the placement of new installations that release micro and nano sized particles containing BPA and similar chemicals to the environment.

You will find our concerns and demands in more detail on the following pages.

Download original document: “Bisphenol A: comments and evidence re: Registration, Evaluation, Authorisation and Restriction of Chemicals, European Chemicals Agency

Bookmark and Share

Date added:  June 28, 2021
EnvironmentPrint storyE-mail story

Emissions from corrosion protection systems of offshore wind farms: Evaluation of the potential impact on the marine environment

Author:  Kirchgeorg, Torben; Bell, Anna Maria; et al.

Abstract: Offshore wind energy is a fast growing sector of renewable energies worldwide. This will change the marine environment and thus, a wide range of environmental impacts of offshore wind farms are subject of current research. Here we present an overview about chemical emissions from corrosion protection systems, discuss their relevance and potential impact to the marine environment, and suggest strategies to reduce their emissions. Corrosion is a general problem for offshore infrastructures and corrosion protection systems are necessary to maintain the structural integrity. These systems are often in direct contact with seawater and have different potentials for emissions, e.g. galvanic anodes emitting substantial amounts of metals. Organic coatings may release organic substances due to weathering and/or leaching. Current assumptions suggest a low environmental impact, but monitoring data is not sufficient to assess the environmental impact of this new source.

T. Kirchgeorg, I. Weinberg, M. Hörnig, Section of Marine Sediments, Department of Marine Science, Federal Maritime and Hydrographic Agency, Hamburg, Germany
R. Baier, M.J. Schmid, Steel Structures & Corrosion Protection Section, Department of Structural Engineering, Federal Waterways Engineering and Research Institute, Karlsruhe, Germany
B. Brockmeyerc, Section of Environmentally Hazardous Substances, Department of Marine Science, Federal Maritime and Hydrographic Agency, Hamburg, Germany

Marine Pollution Bulletin
Volume 136, November 2018, Pages 257-268
doi: 10.1016/j.marpolbul.2018.08.058

Also see:

Ecotoxicological characterization of emissions from steel coatings in contact with water

Abstract: In order to prevent corrosion damage, steel structures need to be protected. Coating systems achieve this by the isolation of the steel from its environment. Common binding agents are epoxide and polyurethane resins which harden by polyaddition reactions. In contact with water, various organic substances might be leached out and released into the aquatic environment potentially causing adverse effects. So far, no legal requirements are mandatory for the environmental sustainability of coating systems. To characterize emissions from steel coatings, recommendations for the ecotoxicological assessment of construction products were utilized. Seven different coating systems based on epoxide or polyurethane resins were leached in 8 steps (6 h–64 d), followed by the testing of acute toxic effects on bacteria and algae as well as estrogen-like and mutagenic effects. In addition, chemical analysis by GC-MS was performed to identify potentially toxic compounds released from the coating systems. Two systems tested did not show any significant effects in the bioassays. One coating system caused significant algal toxicity, none was found to cause mutagenic effects. The other coating systems mainly showed estrogenic effects and bacterial toxicity. The effects increased with increasing leaching time. 4-tert-butylphenol, which is used in epoxy resins as a hardener, was identified as the main contributor to acute and estrogenic effects in two coatings. The release mechanism of 4-tert-butylphenol was characterized by two different modelling approaches. It was found that the release from the most toxic coating is not explainable by an elevated content of 4-tert-butylphenol but more likely by the release mechanism that – in contrast to the less toxic coating – is controlled not only by diffusion. This finding might indicate a sub-optimal formulation of this coating system resulting in a less stable layer and thus an increased release of toxic compounds.

Anna Maria Bell, Georg Reifferscheid, Sebastian Buchinger, Thomas Ternes, Federal Institute of Hydrology, Koblenz, Germany
Roland Baier, Section B2 – Steel Structures and Corrosion Protection, Federal Waterways Engineering and Research Institute, Karlsruhe, Germany
Birgit Kocher, Department V3 – Environmental Protection, Federal Highway Research Institute, Bergisch Gladbach, Germany

Water Research
Volume 173, 15 April 2020, 115525
doi: 10.1016/j.watres.2020.115525

Bookmark and Share

Date added:  April 15, 2021
Environment, Law, Oregon, WildlifePrint storyE-mail story

Petition for Judicial Review, Summit Ridge Wind Farm

Author:  Friends of the Columbia Gorge; Oregon Wild; and Central Oregon Landwatch

If constructed and operated, the Facility would result in adverse impacts to wildlife species, including bald eagles (Haliaeetus leucocephalus) and golden eagles (Aquila chrysaetos). In 2009 and/or 2010, raptor surveys detected numerous bald and golden eagles and nest sites within 1,000 to 10,000 feet of proposed wind turbine locations. …

This appeal challenges three agency Orders issued by ODOE [Oregon Department of Energy], on August 10, 2020; August 21, 2020; and September 10, 2020. …

In issuing the three challenged Orders, ODOE acted in violation of the Oregon Administrative Procedures Act and the Oregon Energy Facility Siting Act by erroneously interpreting one or more provisions of law; acting outside the range of discretion delegated to the agency by law; acting inconsistent with one or more agency rules, officially stated agency positions, and/or prior agency practices without explaining the inconsistencies; acting in violation of a statutory provision; and/or issuing agency orders not supported by substantial evidence in one or more of the following ways: [50(a)–(v)].

Pursuant to ORS 469.563, Petitioners request that this Court issue such restraining orders and/or such temporary and permanent injunctive relief as is necessary to secure compliance with applicable provisions of the Oregon Energy Facility Siting Act and its implementing regulations and/or with the terms and conditions of a site certificate.

Download original document: “Amended Petition for Judicial Review, Summit Ridge Wind Farm

Bookmark and Share

Earlier Documents »

Get the Facts Follow Wind Watch on Twitter

Wind Watch on Facebook


© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.