[ posts only (not attachments) ]

ISSUES/LOCATIONS

View titles only
(by date)
List all documents, ordered…

By Title

By Author

View PDF, DOC, PPT, and XLS files on line
RSS

Add NWW documents to your site (click here)

Sign up for daily updates

Keep Wind Watch online and independent!

Donate $10

Donate $5

News Watch

Selected Documents

Research Links

Alerts

Press Releases

FAQs

Publications & Products

Photos & Graphics

Videos

Allied Groups

Resource Documents: Wildlife (241 items)

RSSWildlife

Also see NWW "wildlife" FAQ

Documents presented here are not the product of nor are they necessarily endorsed by National Wind Watch. These resource documents are provided to assist anyone wishing to research the issue of industrial wind power and the impacts of its development. The information should be evaluated by each reader to come to their own conclusions about the many areas of debate.


Date added:  December 21, 2017
WildlifePrint storyE-mail story

Top 10 Myths About Wind Energy and Birds

Author:  Hutchins, Michael

Wind energy is known to many as a “green” solution to climate change. But wind energy is really just another form of industrial development, and we can’t ignore its costs and consequences to wildlife and their habitats. As Director of ABC’s Bird-Smart Wind Energy Campaign, I often encounter several common misconceptions about wind development. Read on to learn more about the real impact of unchecked wind energy development on birds and other wildlife.

Myth 1: Wind turbines are “green” energy with little or no impact on the environment.

Any form of energy production, including renewable energy, has environmental impacts. The construction of large-scale, commercial wind energy facilities takes up entire landscapes, which reduces wildlife habitat. And the maintenance roads and other support infrastructure necessary also alter habitats and affect wildlife, often in very deleterious, subtle ways. If not properly sited, operated, and regulated, renewable energy can be very harmful to wildlife and natural habitats.

Myth 2: We shouldn’t be concerned about wind energy because it doesn’t take nearly the same toll on birds as feral cats, building collisions, pesticides, and other threats.

There are two things to remember here. First, wind turbines’ impacts are far from trivial. And the impacts of all human-caused mortality are cumulative, making comparisons irrelevant and misleading.

Wind turbines and their associated infrastructure – primarily power lines and towers – are one of the fastest-growing threats to birds in the United States and Canada. At the end of 2016, there were more than 52,000 commercial-scale wind turbines operating in the United States, and tens of thousands more are currently planned or under construction. Research shows that hundreds of thousands of birds and bats die every year when they accidentally collide with the fast-spinning turbine blades. That number grows with each turbine built.

Myth 3: Power lines and towers are a separate issue.

Power lines and towers are clearly part of the equation, because they’re necessary to carry power to the grid. As a result of large-scale, commercial wind and solar development, hundreds of miles of new power lines and towers are being built to transport energy across the United States, putting birds at risk of collisions and electrocutions. The generation of energy and its transportation go hand in hand – and both present risks to wildlife. Tens of millions of birds are killed every year when they collide with towers with or are electrocuted by electrical lines.

Myth 4: The wind industry is mitigating for bird and bat deaths.

As far as birds are concerned, only two mitigation methods have been proven to be successful: building wind energy facilities away from large concentrations of birds, and slowing or stopping the movement of turbine blades (known in the industry as “curtailment”). Unfortunately, neither of these approaches is working. Turbines are going up virtually everywhere, and curtailment is unpopular with wind companies because it cuts into their profit margins.

Some companies say they use radar to detect birds and bats and then temporarily shut down a turbine’s blades. But these technologies are expensive and appear to be seldom used – and their efficacy in preventing bird and bat deaths has not been thoroughly tested.
Northern Long-eared Bat/U.S. Fish and Wildlife Service

One way to make wind turbines safe for birds and bats, such as this Northern Long-eared Bat, is to build them far from large concentrations of these animals. Photo by U.S. Fish and Wildlife Service

Myth 5: The U.S. Fish & Wildlife Service (FWS) and state wildlife agencies are regulating the wind industry to minimize its impacts on wildlife.

We have at least three federal laws designed to protect our native birds and bats from purposeful or accidental harm: the Endangered Species Act, the Migratory Bird Treaty Act, and the Bald and Golden Eagle Protection Act. Enforcement of these laws has been sporadic at best, especially with regard to the wind industry. To make matters worse, federal guidelines governing wind energy development are voluntary, not mandatory, and few developers at present are obtaining the “take” permits necessary to kill protected species.

Meanwhile, state and local regulation of the wind industry varies widely. Some states, such as Oklahoma, have virtually no regulations at all. Others, like Hawai‘i, have more-stringent policies. Wind energy has developed so rapidly that it has gotten way out ahead of the regulatory framework.

Myth 6: Wind companies conduct scientifically rigorous studies before and after new facilities are built to assess the risks wind turbines pose to birds – and are transparent in what they find.

Federal guidelines currently allow wind companies to hire consultants to prepare reports assessing a proposed facility’s risk for wildlife. It’s important to note that these are not independent, third-party scientists; they are individuals who are being paid by wind companies to do this work. Unsurprisingly, I have yet to encounter any pre-construction study that recommends moving a proposed project because of elevated risks to wildlife.

There is also the problem of hidden data. The wind industry treats information on bird and bat mortality as a proprietary trade secret. Some wind energy developers have even sued to hide these data from the public. Hawai‘i is currently the only state that requires the collection of mortality data by independent, third-party experts, and makes the information available to the public on request.

Myth 7: Offshore wind development is less destructive than onshore wind development.

There’s no indication that turbines placed in the open ocean or in the Great Lakes are any safer for birds than land-based turbines. A whole suite of different organisms could be impacted by offshore wind development and underwater cables, including migrating marine birds, waterfowl, cetaceans, fish, and other ocean-dwelling wildlife. And it’s going to be more difficult to gauge the impact: risk assessments are often based on visual observations, which can be difficult, if not impossible, during rough weather, when birds may be at highest risk. What’s more, birds that collide with the turbine blades will fall into open water and be lost.

Myth 8: We can build wind turbines in and around the Great Lakes with little or no impact on wildlife.

The best way to reduce the impacts of wind energy on birds and bats is to keep turbines away from large concentrations of these animals. Major migratory routes, stopover habitat, and key breeding or foraging areas should all be off-limits for wind development. Yet all of these are found in and around the Great Lakes, which is home to one of the world’s densest concentrations of migratory birds and bats.

Here at ABC, we oppose wind turbine construction in the Great Lakes and within at least five miles of its shorelines. We base our position on recent advanced radar studies conducted by the FWS on all five of the Great Lakes. All of the studies clearly show vast numbers of birds and bats flying over the lakes or along their shorelines, many within the rotor-swept areas of wind turbines. The FWS currently recommends that no turbines be built within three miles of the Great Lakes shorelines, while the Nature Conservancy recommends five miles. However, these are just recommendations, and some wind developers are disregarding them.

Myth 9: When it comes to combating climate change, there are no workable alternatives to industrial-scale wind energy.

There are many other ways we can address climate change besides building these huge structures in ecologically sensitive areas. We can preserve wetlands and forests to sequester carbon dioxide; we can be more energy-efficient; and we can reduce our use of fossil fuels and rely less on domestic animals (a major source of greenhouse gases) as a protein source, for starters. One of the best options is distributed solar in our already built environment – parking lots, buildings, and roads.

Myth 10: Climate change is the top threat to wildlife today; we can ignore all other threats because they pale in comparison.

Birds and other wildlife confront many threats, and they add up. One recent analysis of 8,000 species on the International Union for Conservation of Nature Red List of Threatened Species found that climate change is not the most immediate threat to wildlife today; that distinction went to the traditional threats of over-exploitation (overfishing, hunting, and so on) and habitat loss from agriculture. The authors concluded that “efforts to address climate change do not overshadow more immediate priorities for the survival of the world’s flora and fauna.”

We support wind energy development that’s done in ways that do not threaten our irreplaceable and ecologically important wildlife. To make that happen, wind energy development must be regulated more effectively. We must address climate change, to be sure – but the point is that we could be doing it so much better.

Michael Hutchins, Director of American Bird Conservancy’s Bird-Smart Wind Energy Campaign, earned his Ph.D. in animal behavior at the University of Washington. Prior to ABC, Michael was Director/William Conway Endowed Chair, Department of Conservation and Science, at the Association of Zoos and Aquariums for 15 years, and Executive Director/CEO at The Wildlife Society for seven years. He has authored over 220 articles and books on various topics in wildlife science, management, and conservation, and has traveled to over 30 countries to pursue his passion for conservation.

Originally published December 06, 2017, at abcbirds.org.

Also see ABC’s Wind Energy and Birds FAQs:
Part 1: Understanding the Threats
Part 2: Bird-Smart Wind Energy Solutions
Part 3: Take Action

Bookmark and Share


Date added:  November 14, 2017
Portugal, WildlifePrint storyE-mail story

Indirect Impacts of Wind Farms on Terrestrial Mammals: Insights from the Disturbance and Exclusion Effects on Wolves (Canis lupus)

Author:  Ferrão da Costa, Gonçalo; et al.

Abstract —
Due to the technical and functional characteristics of wind turbines, impact assessment studies have focused mainly on flying vertebrates. Nevertheless, evidence from the little available knowledge indicates potential impacts on large terrestrial mammals resulting from habitat fragmentation and increasing human disturbance. Over the last 15 years, more than 900 wind turbines were built inside the range of the Portuguese wolf. Due to the endangered status of this large carnivore in Portugal, several monitoring plans were conducted, resulting in a reasonable amount of information being collected on the effects of wind farms on wolves. We reviewed the methodological approaches, compiled major findings and summarised the mitigation/compensation measures used in Portuguese wind farms. The overall outcomes show increasing human disturbance in wind farm areas, resulting in lower wolf reproduction rates during construction and the first years of operation, as well as shifts in denning site locations of more than 2.5 km away from the wind farm. These findings are of major concern in humanised landscapes, where suitable wolf breeding habitats are reduced. As precautionary measure, new wind farm projects should be restricted in areas that are closer than 2 km from known wolf denning locations.

Gonçalo Ferrão da Costa
João Paula

Bioinsight, Odivelas, Portugal
Francisco Petrucci-Fonseca
Grupo Lobo, Department of Animal Biology and CE3C—Centre for Ecology, Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon, Portugal
Francisco Álvares
CIBIO/InBIO—Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal

In: Mascarenhas M., Marques A., Ramalho R., Santos D., Bernardino J., Fonseca C. (eds) Biodiversity and Wind Farms in Portugal. Springer Cham, 2018; chapter 5, pp 111–134

The Indirect Impacts of Wind Farms on Terrestrial Mammals: Insights from the Disturbance and Exclusion Effects on Wolves (Canis lupus)

Bookmark and Share


Date added:  November 13, 2017
Americas, U.S., WildlifePrint storyE-mail story

Strong geographic and temporal patterns in conservation status of North American bats

Author:  Hammerson, Geoffrey; et al.

Abstract —
Conservationists are increasingly concerned about North American bats due to the arrival and spread of the White-nose Syndrome (WNS) disease and mortality associated with wind turbine strikes. To place these novel threats in context for a group of mammals that provides important ecosystem services, we performed the first comprehensive conservation status assessment focusing exclusively on the 45 species occurring in North America north of Mexico. Although most North American bats have large range sizes and large populations, as of 2015, 18–31% of the species were at risk (categorized as having vulnerable, imperiled, or critically imperiled NatureServe conservation statuses) and therefore among the most imperiled terrestrial vertebrates on the continent [emphasis added]. Species richness is greatest in the Southwest, but at-risk species were more concentrated in the East, and northern faunas had the highest proportion of at-risk species. Most ecological traits considered, including those characterizing body size, roosting habits, migratory behavior, range size, home range size, population density, and tendency to hibernate, were not strongly associated with conservation status. However, nectarivorous bats tended to be more at risk. The conservation status of bats improved from 1985 to 2000 as human disturbances to roosting sites were reduced, but then declined sharply (7%) by 2015 due principally to threats from WNS and wind energy. Although uncertainty about threats from pollution and climate change remain, past experience shows that when threats are clearly identified and management actions taken, populations can recover.

G.A. Hammerson, NatureServe, Port Townsend, Washington
M. Kling, Dept. of Integrative Biology, University of California, Berkeley, California
M. Harkness, NatureServe, Boulder, Colorado
M. Ormes, NatureServe, c/o Biology Department, University of Massachusetts, Boston, Massachusetts
B.E. Young, NatureServe, Escazu, Costa Rica

Biological Conservation, Volume 212, Part A, August 2017, Pages 144-152
doi: 10.1016/j.biocon.2017.05.025

Download original document: “Strong geographic and temporal patterns in conservation status of North American bats

Bookmark and Share


Date added:  November 11, 2017
Europe, Greece, WildlifePrint storyE-mail story

Balanced solution to the cumulative threat of industrialized wind farm development on cinereous vultures (Aegypius monachus) in south-eastern Europe

Author:  Vasilakis, Dimitris; Whitfield, D. Philip; and Kati, Vassiliki

Abstract —
Wind farm development can combat climate change but may also threaten bird populations’ persistence through collision with wind turbine blades if such development is improperly planned strategically and cumulatively. Such improper planning may often occur. Numerous wind farms are planned in a region hosting the only cinereous vulture population in south-eastern Europe. We combined range use modelling and a Collision Risk Model (CRM) to predict the cumulative collision mortality for cinereous vulture under all operating and proposed wind farms. Four different vulture avoidance rates were considered in the CRM. Cumulative collision mortality was expected to be eight to ten times greater in the future (proposed and operating wind farms) than currently (operating wind farms), equivalent to 44% of the current population (103 individuals) if all proposals are authorized (2744 MW). Even under the most optimistic scenario whereby authorized proposals will not collectively exceed the national target for wind harnessing in the study area (960 MW), cumulative collision mortality would still be high (17% of current population) and likely lead to population extinction. [emphasis added] Under any wind farm proposal scenario, over 92% of expected deaths would occur in the core area of the population, further implying inadequate spatial planning and implementation of relevant European legislation with scant regard for governmental obligations to protect key species. On the basis of a sensitivity map we derive a spatially explicit solution that could meet the national target of wind harnessing with a minimum conservation cost of less than 1% population loss providing that the population mortality (5.2%) caused by the operating wind farms in the core area would be totally mitigated. Under other scenarios, the vulture population would probably be at serious risk of extinction. Our ‘win-win’ approach is appropriate to other potential conflicts where wind farms may cumulatively threaten wildlife populations.

Dimitris P. Vasilakis
Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Aitoloakarnania, Greece; Directorate of Evros Region Forestry Service, Decentralized Administration of Macedonia-Thrace, Alexadroupolis, Evros, Greece
D. Philip Whitfield
Natural Research, Brathens Business Park, Banchory, Aberdeenshire, United Kingdom
Vassiliki Kati
Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Aitoloakarnania, Greece

PLoS One; Published February 23, 2017
doi: 10.1371/journal.pone.0172685

Download original document: “A balanced solution to the cumulative threat of industrialized wind farm development on cinereous vultures (Aegypius monachus) in south-eastern Europe

Bookmark and Share


Earlier Documents »

Get the Facts Follow Wind Watch on Twitter

Wind Watch on Facebook

Share

CONTACT DONATE PRIVACY ABOUT SEARCH
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.
Share

Wind Watch on Facebook

Follow Wind Watch on Twitter