[ posts only (not attachments) ]

ISSUES/LOCATIONS

View titles only
(by date)
List all documents, ordered…

By Title

By Author

View PDF, DOC, PPT, and XLS files on line
RSS

Add NWW documents to your site (click here)

Sign up for daily updates

Keep Wind Watch online and independent!

Donate $10

Donate $5

News Watch

Selected Documents

Research Links

Alerts

Press Releases

FAQs

Publications & Products

Photos & Graphics

Videos

Allied Groups

Resource Documents: Economics (185 items)

RSSEconomics

Also see NWW "economics" FAQ

Documents presented here are not the product of nor are they necessarily endorsed by National Wind Watch. These resource documents are provided to assist anyone wishing to research the issue of industrial wind power and the impacts of its development. The information should be evaluated by each reader to come to their own conclusions about the many areas of debate.


Date added:  November 11, 2017
Aesthetics, Economics, ScotlandPrint storyE-mail story

Wind farms and tourism in Scotland: A review with a focus on mountaineering and landscape

Author:  Gordon, David

Introduction

1. In the course of public debate on contentious topics, especially when large sums of money and politics are involved, ‘evidence’ is often collateral damage. Statistics are more often than not used, as the old joke has it, as a drunk uses a lamp-post: for support not for illumination.

2. This paper is the product of frustration and dismay at the misuse of evidence, particularly statistical evidence, by a powerful pro-wind lobby to create a confused, unbalanced and complacent picture of the possible impact of the growth of onshore wind electricity generation in Scotland on tourism and recreation, particularly mountainlinked tourism and recreation. Hyperbole by opponents of wind energy in the face of this well-organised and well-connected lobby is understandable, but equally fails to illuminate.

3. Proponents of wind farms would have us believe that tourism impacts are negligible. Opponents would have us believe that the destruction of tourism in Scotland is nigh. Neither position is at all tenable. The real position is much more subtle and complex. That is an uncomfortable message for all sides in a polarised debate.

4. This paper is an independently-written attempt to assess, as objectively as possible, what is really known about the possible impact of wind farms upon mountain-linked tourism and recreation within Scotland. This is set in the context of tourism in general, not least because there is no data specifically on mountaineering other than that produced by Mountaineering Scotland itself. It is foregrounded by a brief setting out of my personal and Mountaineering Scotland’s positions so that readers can judge whether these have biased my interpretation of the available evidence.

The key findings are:

5. There is no simple answer to the question of whether wind farms affect tourism (or recreation). It depends on

6. The hypothesis that best fits the available, far from perfect, data is that wind farms do have an effect on tourism but the effect is experienced predominantly in areas where large built structures are dissonant with expectations of desired attributes such as wildness or panoramic natural vistas, and where a high proportion of visitors come from the 25% of tourists in Scotland who are particularly drawn by the quality of upland and natural landscapes, with mountaineering visitors prominent amongst these. In much of Scotland, and for most tourists, wind farms are no serious threat to tourism: the nature of the local tourism offer, and good siting of wind farms, mean they can co-exist.

7. The main adverse effect of wind farms on tourism, thus far, is displacement within Scotland from areas perceived as ‘spoilt’ to areas seen as still retaining the desired sense of naturalness. The GCU Moffat Centre study, relied upon by developers and the Scottish Government, estimated the likely level of tourism displacement across Scotland by wind farms to be around 1-2%. The estimates in the present paper range up to 5%. This difference is modest given the five-fold increase in onshore wind farm capacity in Scotland between the data points for the two studies (2007 & 2015).

8. Tourism in Scotland is not thriving, with standard indicators of tourism volume in 2016, the latest available consistent data, still below pre-2008 levels. Positive media coverage of a ‘thriving’ tourism sector, typically based on statistically selective press releases, is seldom supported by the full figures. In a competitive world, it is foolish to put at risk any segment of Scotland’s tourism market.

9. Five per cent of Scottish tourism spend would be £250m. This is well within the range of fluctuation seen in national tourist spend from year to year and therefore undetectable, even if it was all lost to Scotland and not simply displaced within Scotland. Since the true figure could well be smaller, attempting to find evidence in national or regional tourism statistics of the effect of any particular change is almost certainly futile. It is statistically illiterate to think the lack of detection of a modest effect in volatile regional and national tourism statistics is evidence of no effect.

10. But any effect of wind farms will be much less visible in routine statistics because the income is not lost to the national tourism economy but displaced and relocated within Scotland. Even the lowest level estimated – 1% or £35m – would have a marked impact if concentrated in a limited number of places. It is still doubtful if such an effect could be detected in routine statistics since much tourism economic activity does not feature in statistics (e.g. many tourism business are below the VAT registration level) and it is such activity that might be most likely to be affected by a local drop in visitors.

11. BiGGAR Economics has attempted to look at impact in the vicinity of a general cohort of wind farms and has found no effect. Setting aside several methodological concerns about this study, the sample included only one wind farm in an area where a tourism effect would be predicted based on the conclusions of the present paper. The postconstruction outcome data for this wind farm was confounded by continuing wind farm construction locally, making it impossible to separate any tourism effect from the effect of construction worker accommodation and expenditure.

12. The evidence on wind farms and tourism in Scotland relates to the present pattern of development consented under a rigorous planning system. Mountaineering Scotland does not agree with all planning decisions, but the process is certainly exacting. This makes it difficult to assess impact on mountaineering or wild land tourism empirically because few wind farms that might be expected to have an adverse effect have been consented and most are not yet built. Insofar as Mountaineering Scotland objections can be used to identify planning applications in areas important for mountaineering and related tourism, there have been only eight wind farm consents in such areas and only two were operational by 2016. When wind farms are refused planning permission in mountain or wild land areas the reasons given are typically landscape and visual, but an unrecognised side-effect has been to limit potential for tourism impacts.

13. Despite the clearly inadequate nature of the present evidence base on wind farms and tourism, the Scottish Government remains content with reviews of old research with almost no primary research later than 2008, despite the substantially changed context. That the government and its agencies have little interest in commissioning research to better define and understand the interaction between specific segments of the tourism market and wind farms is to be regretted and serves the public interest poorly.

14. Strategic and local planning decisions on the extent and pattern of wind farm development in Scotland should take better account of the potential for adverse impact in areas important for landscape-dependent tourism, and safeguard sufficient such areas in each part of Scotland. It is not enough to protect only those landscapes within the small number of National Parks and National Scenic Areas.

Published by Mountaineering Scotland, November 2017

Download original document: “Wind farms and tourism in Scotland: A review with a focus on mountaineering and landscape

Bookmark and Share


Date added:  October 31, 2017
Economics, TechnologyPrint storyE-mail story

Wind Energy Operations & Maintenance

Author:  Wind Energy Update

2010 report:

2012 report:

2017 report:

As part of our research into failure rates, costs and downtime on US Wind Farms, we have built a model which estimates lifetime costs of scheduled maintenance for a wind farm in the US. The input data used to build this data pack is a 210MW wind farm made up of 105 2MW turbines of 80 metres in height. The tables below show component risk factors, periodic maintenance costs, failure scenarios and supply chain factors [all costs USD]. CMS [complete monitoring system] options play an increasingly important role in both mean time to repair and the time between failures. As a result they have a large impact on costs. These are also taken into account. Finally the data pack provides major component lifetime O&M cost for the wind farm.

Scheduled maintenance cost—
Frequency per year: 2
Cost per action per turbine: $6,000
Reduced cost: $5,100
Lifetime cost per farm: $21,420,000

Component risk factors—

Components Replacement cost Failure rate (%), failures per 100 parts by year 20 Total failures in 20 years (total farm) Average downtime per failure, days Average downtime losses per faiure Total downtime losses for the rest of the Labor cost per failure Crane cost per failure
Gearbox $220,000 8 8.4 5.2 $5,241.6 $44,029 $20,000 $150,000
Blades $120,000 8 25.2 1.8 $1,814.4 $45,723 $25,000 $45,000
Generator $130,000 10 10.5 4.2 $4,233.6 $44,453 $7,000 $61,000

Supply chain risk factors—

  Spare in stock / No spare Distance to manufacturing facility (if no spare available)
Available / No spare Lead time, days Close / Medium / Remote Time for transportation, days
Gearbox No spare 70 Remote 15
Blades No spare 105 Remote 15
Generator No spare 70 Remote 15

CMS factors (per turbine)—

  Capital Sensor Cost (including installation) per turbine Annual cost (O&M) per turbine Detectability Efficiency
Monitoring type Cost Reduced cost (economies of scale) Fixed cost Reduced cost (economies of scale)
Gearbox Oil+vibration+temperature $20,000 $18,000 $1,000 $850 58 59
Vibration+temperature $10,000 $9,000 41 49
Temperature 0 0 24 42
Blades Optical $15,500 $13,950 35 40
Generator Temperature 0 0 40

 

  Preventive Predictive

Lifetime maintenance cost for the farm Lifetime maintenance cost assuming secondary damage Lifetime maintenance and CMS operation cost for the farm Monitoring type
Gearbox $3,420,829 $3,762,912 $3,910,603 Oil+vibration+temperature
$3,444,192 Vibration+temperature
$2,915,926 Temperature
Blades $5,241,963 $5,504,061 $5,930,817 Optical
Generator $2,224,253 $2,379,950 $1,909,027 Temperature

We have also looked at failure rates across different turbine technology types and designs. The graph below shows major component failure rates for all types of turbines in our dataset during the first ten years of operations. Different failure modes have different repair times, ultimately leading to different costs.

Bookmark and Share


Date added:  October 12, 2017
Economics, EmissionsPrint storyE-mail story

Impossibility of 100 percent renewables

Author:  Hayward, Steven; and Nelson, Peter

Some observers suggest that the United States can source 100 percent of its electricity from renewable sources by the year 2050, and can easily replace not only coal but also nuclear power plants and even natural gas plants with renewable energy alone. The most frequently cited analysis in support of this proposition comes from Stanford University’s Mark Jacobson, who has published a series of papers that purport to establish the feasibility of 100 percent renewable power. This is the kind of work that generates enthusiastic headlines and news stories, and becomes a rote talking point for environmental advocacy and special interest lobbies. A closer look shows the superficiality of this claim. Twenty-one prominent academic energy experts, all of whom generally support renewable energy, recently published (doi: 10.1073/pnas.1610381114) a harsh critique of Jacobson’s influential work in the Proceedings of the National Academy of Sciences, concluding that:

‘[Jacobson’s] work used invalid modeling tools, contained modeling errors, and made implausible and inadequately supported assumptions. Policy makers should treat with caution any visions of a rapid, reliable, and low-cost transition to entire energy systems that relies almost exclusively on wind, solar, and hydroelectric power. … If one reaches a new conclusion by not addressing factors considered by others, making a large set of unsupported assumptions, using simpler models that do not consider important features, and then performing an analysis that contains critical mistakes, the anomalous conclusion cannot be heralded as a new discovery. The conclusions reached by the study about the performance and cost of a system of “100% penetration of intermittent wind, water and solar for all purposes” are not supported by adequate and realistic analysis and do not provide a reliable guide to whether and at what cost such a transition might be achieved. … A policy prescription that overpromises on the benefits of relying on a narrower portfolio of technologies options could be counterproductive.’

How much more expensive and counterproductive? A recent study (doi: 10.1016/j.tej.2016.03.001) in The Electricity Journal of decarbonization through reliance on renewables in Germany, California, and Wisconsin (a state closely analogous to Minnesota in many ways) would require an investment in wind and solar power much larger than in conventional energy supplies, chiefly because the intermittency of the wind and solar power would require massive amounts of surplus capacity. A power mix in Wisconsin that retained nuclear and natural gas electricity would achieve a 15 percent greater reduction in greenhouse gas emissions than a system with 80 percent wind and solar power, and at less than half the cost. As Brick and Thernstrom note:

‘[T]he intermittency of wind and solar PV [photovoltaics] means that systems that are heavily reliant on them must be significantly larger than conventional systems; this increases their cost and capital requirements dramatically. … Efforts to promote an all- (or nearly all-) renewables future are, in effect, a commitment to building the largest electric power system possible. It might be better to start from the presumption that the smallest power system that meets our needs is likely to be the most efficient, and have the least social and environmental impact.’

The study does not attempt to estimate the land area requirements for such an extensive renewable energy system, but given the examples contained in Figure 14, they are likely to be substantial. Minnesota’s government ought to do a credible estimate of future land area needs for its renewable targets.

Bookmark and Share


Date added:  October 12, 2017
Economics, Emissions, MinnesotaPrint storyE-mail story

Energy Policy in Minnesota: The High Cost of Failure

Author:  Hayward, Steven; and Nelson, Peter

Executive Summary:

In recent years, the state of Minnesota has pursued a series of increasingly aggressive renewable energy and “clean energy” policies that cost electricity consumers billions of dollars, without achieving its ambitious environmental protection goals.

Minnesota law sets out ambitious state energy policy goals. The primary goal would have the state reduce greenhouse gas emissions 15 percent below 2005 levels by 2015, 30 percent by 2025, and 80 percent by 2050. State law incorporates a number of additional energy policy goals aimed largely at supporting these greenhouse gas reduction targets. In particular, the state’s renewable energy standard requires utilities to generate a substantial portion (25 to 30 percent) of electricity from renewable sources, mostly wind.

Historically, Minnesota enjoyed the advantage of relatively cheap electricity, with rates typically 18 percent less than the national average. However, since spending an estimated $10 billion on building wind farms and billions more on new and upgraded transmission lines, Minnesota has lost this competitive advantage with little to show for it, except higher electric bills. As electricity generation from carbon free wind approaches 20 percent of total generation, Minnesota has not experienced any appreciable reduction in greenhouse gas emissions relative to the U.S. average.

This report evaluates Minnesota’s energy policy and reaches five main findings that buttress one conclusion: Minnesota’s aspirational energy policy is a grand exercise in virtue signaling that does little to reduce either conventional pollution or greenhouse gas emissions.

Minnesota has lost its advantage on electricity pricing. Between 1990 and 2009, the retail price of electricity in Minnesota was, on average, 18.2 percent lower than the national average. However, in just seven years, this price advantage has completely disappeared. February 2017 marked the first month the average retail price of electricity in Minnesota rose above the U.S. price. (Data are available dating back to 1990.) If in the past seven years Minnesota would have maintained its historic price advantage versus the rest of the country, the state’s consumers would have paid nearly $4.4 billion less than what the actual cost of electricity turned out to be.

Minnesota’s energy policy primarily promotes wind power. Minnesota’s energy policy emphasizing renewable energy is mostly an electricity policy, which represents only about 40 percent of the state’s total energy consumption. Because Minnesota’s geography is not suitable for large-scale solar power, it aims, to date, for only modest increases in solar. As such, Minnesota’s energy policy is primarily a wind-energy policy.

Minnesota’s energy policy is failing on its own terms, as it has not achieved a significant reduction in CO2 emissions. While Minnesota was losing its advantage on electricity pricing, it did not see any significant decreases in CO2 emissions. CO2 emissions in Minnesota declined by 6.6 percent from 2005 (the peak year for CO2 emissions in both the U.S. and Minnesota) to 2014 (before starting to rise again). This decline is one-third less than the decline experienced by the nation as a whole, which saw greenhouse gas emissions drop 9.3 percent during the same time period. Looking at just emissions from the electric power sector, emissions in Minnesota dropped by slightly more than the U.S. However, since 2009, the state has made little to no progress on emissions even as electricity generation by wind increased by 92 percent.

To satisfy Minnesota’s renewable energy standard, an estimated $10 billion dollars has been spent on building wind farms and billions more on transmission. In the past five years, Minnesota utilities have reported using wind power from wind farms totaling 5,000 megawatts of nameplate capacity to meet the requirements of the state’s renewable energy standard. Based on industry cost estimates for building new generating capacity, ratepayers are committed to covering an estimated $10 billion for constructing these wind farms and billions more for the transmission needed to move this new power to market. On top of these upfront costs, ratepayers are on the hook for ongoing wind energy maintenance costs, property taxes, and replacement power needed when the wind doesn’t blow.

October 2017

Steven F. Hayward, Ph.D., senior resident scholar, Institute of Governmental Studies, University
of California at Berkeley, and author of the 2011 Almanac of Environmental Trends.

Peter J. Nelson, J.D., vice president and senior policy fellow, Center of the American Experiment

Download original document: “Energy Policy in Minnesota: The High Cost of Failure

Bookmark and Share


Earlier Documents »

Get the Facts Follow Wind Watch on Twitter

Wind Watch on Facebook

Share

CONTACT DONATE PRIVACY ABOUT SEARCH
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.
Share

Wind Watch on Facebook

Follow Wind Watch on Twitter