[ posts only (not attachments) ]

Go to multi-category search »

ISSUES/LOCATIONS

View titles only
(by date)
List all documents, ordered…

By Title

By Author

View PDF, DOC, PPT, and XLS files on line
RSS

Add NWW documents to your site (click here)

Sign up for daily updates

Keep Wind Watch online and independent!

Donate $10

Donate $5

News Watch

Selected Documents

Research Links

Alerts

Press Releases

FAQs

Publications & Products

Photos & Graphics

Videos

Allied Groups

Resource Documents: Economics (199 items)

RSSEconomics

Also see NWW "economics" FAQ

Unless indicated otherwise, documents presented here are not the product of nor are they necessarily endorsed by National Wind Watch. These resource documents are shared here to assist anyone wishing to research the issue of industrial wind power and the impacts of its development. The information should be evaluated by each reader to come to their own conclusions about the many areas of debate. • The copyrights reside with the sources indicated. As part of its noncommercial effort to present the environmental, social, scientific, and economic issues of large-scale wind power development to a global audience seeking such information, National Wind Watch endeavors to observe “fair use” as provided for in section 107 of U.S. Copyright Law and similar “fair dealing” provisions of the copyright laws of other nations.


Date added:  April 24, 2019
Economics, Grid, U.S.Print storyE-mail story

Do Renewable Portfolio Standards Deliver?

Author:  Greenstone, Michael; McDowell, Richard; and Nath, Ishan

[Abstract] Renewable Portfolio Standards (RPS) are the largest and perhaps most popular climate policy in the US, having been enacted by 29 states and the District of Columbia. Using the most comprehensive panel data set ever compiled on program characteristics and key outcomes, we compare states that did and did not adopt RPS policies, exploiting the substantial differences in timing of adoption. The estimates indicate that 7 years after passage of an RPS program, the required renewable share of generation is 1.8 percentage points higher and average retail electricity prices are 1.3 cents per kWh, or 11% higher; the comparable figures for 12 years after adoption are a 4.2 percentage point increase in renewables’ share and a price increase of 2.0 cents per kWh or 17%. These cost estimates significantly exceed the marginal operational costs of renewables and likely reflect costs that renewables impose on the generation system, including those associated with their intermittency, higher transmission costs, and any stranded asset costs assigned to ratepayers. The estimated reduction in carbon emissions is imprecise, but, together with the price results, indicates that the cost per metric ton of CO₂ abated exceeds $130 in all specifications and ranges up to $460, making it least several times larger than conventional estimates of the social cost of carbon. These results do not rule out the possibility that RPS policies could dynamically reduce the cost of abatement in the future by causing improvements in renewable technology.

Energy Policy Institute, Becker Friedman Institute for Economics, University of Chicago, April 2019

Michael Greenstone, University of Chicago and National Bureau of Economic Research
Richard McDowell, Amazon
Ishan Nath, University of Chicago

Download original document: “Do Renewable Portfolio Standards Deliver?

Download summary

Bookmark and Share


Date added:  March 5, 2019
Economics, Filings, Florida, Health, Nebraska, Noise, Property values, U.S.Print storyE-mail story

Kohmetscher v. Nextera

Author:  Kohmetscher, Kevin; Healy, David; and McGuire, Myles

IN THE UNITED STATES DISTRICT COURT FOR THE SOUTHERN DISTRICT OF FLORIDA

Plaintiff, Kevin Kohmetscher, brings this Class Action Complaint & Demand for Jury Trial against Defendant, NextEra Energy, Inc. (“NextEra” or “Defendant”), to stop Defendant from operating wind turbines near residential communities in a way that causes a nuisance and interferes with homeowners’ use and enjoyment of their property. Plaintiff alleges as follows based on personal knowledge as to himself and his own acts and experiences …

NATURE OF THE ACTION

1.  Defendant is one of the largest electric utility companies in the country, and the largest generator of wind energy in the world.

2.  To generate wind energy, Defendant has constructed numerous “wind farms” across the United States. A wind farm is an array of wind turbines. Each turbine sits high in the air atop a tower and consists of a large rotor with three blades that spin as wind passes over the blades. Defendant’s wind farms often consist of dozens of turbines and stretch for miles across open terrain.

3.  Although wind farms can supply renewable energy, they can also pose a number of hazards when built too close to homes and residential communities.

4.  For instance, a turbine’s spinning blades create flickering shadows that pass over nearby land. For those in the path of a wind turbine’s shadows, the “shadow flicker” effect is similar to a constant strobe light. Those who experience prolonged shadow flicker often complain of severe headaches, nausea, difficulty concentrating, and in some cases seizures.

5.  Turbines are also very noisy. The spinning blades create a deep thumping noise that sounds similar to a distant helicopter or train. This constant sound can travel for miles depending on weather conditions, and results in a decreased quality of life for those within a certain radius of the wind turbines due to stress, loss of sleep, and anxiety.

6.  Rather than constructing its wind farms away from residential areas to prevent interfering with homeowners’ use and enjoyment of their land, Defendant has instead sited many of its wind farms in the middle of farm fields, near houses, and next to important roads.

7.  Although Defendant’s chosen wind farm locations may be optimal for wind energy generation, the turbines’ proximity to residential areas can be devastating to those living in the surrounding community. The turbines drive people from their homes due to the unreasonable inconvenience, interference, annoyance, and adverse health effects caused by the turbines. Wind farms also destroy the scenic beauty of rural areas, cluttering the horizon with conspicuous towers and spinning blades.

8.  Those who attempt to sell their homes and move away from Defendant’s wind farms are often unable to do so because the value of land near turbines plummets.

9.  Accordingly, Plaintiff brings this action on his own behalf and on behalf of similarly situated individuals to obtain redress and injunctive relief for those who have suffered harm as a result of Defendant’s substantial and unreasonable interference with their use and enjoyment of their property.

10.  On his own behalf and on behalf of a proposed class defined below, Plaintiff seeks an award of damages compensating him and the putative class members for the negative effects that Defendant’s turbines have had on their health and well-being, use and enjoyment of their property, and diminution in value of their property due to Defendant’s turbines. Plaintiff also seeks a permanent injunction barring Defendant from continuing to unreasonably interfere with his and the putative class members’ use and enjoyment of their property.

ALLEGATIONS OF FACT COMMON TO ALL COUNTS

Background

16.  Wind energy is produced through the use of wind turbines. Turbines generally consist of three spinning blades connected to a rotor and a generator that sit atop a tower. As wind passes over the blades, the blades rotate and spin the generator to convert the wind’s kinetic energy into electrical energy.

17.  Towers range in size up to 500 feet high, and blades can be more than 260 feet long. Due to their size, wind turbine towers require a large foundation to stay upright. Turbines are generally painted white to make them visible to aircraft.

18.  When used to generate energy for commercial applications, large numbers of wind turbines are grouped together for efficiency in arrays known as wind farms.

19.  Wind farms require use and control of extensive land area in order to optimize the spacing between turbines and minimize turbulence at downwind turbines.

20.  Wind farms are typically sited in wide-open, rural areas. As such, the turbines often disrupt the natural scenic beauty of the land where they are placed. Wind farms also pose a risk of mortality to migratory birds whose flight paths pass through wind farms.

21.  Many industrial wind turbine manufacturers recommend that turbines be at least 1,500 feet from any residence—a minimum setback—to provide a safety zone in the event of catastrophic failure (e.g. a blade breaks and flies off, or the turbine flings shards of ice that have accumulated along the blades during winter).

22.  As a result, there is typically a “no-build” zone in a 1,500 feet radius surrounding any turbine. In many instances, however, this “no-build” zone overlaps with the property of landowners.

23.  More importantly, wind turbines often interfere with residents’ use and enjoyment of their property even where they live beyond the recommended minimum setback.

24.  For instance, the rotation of turbine blades causes a rhythmic flickering of sunlight, commonly called “shadow flicker.”

25.  Shadow flicker can be especially noticeable in the mornings and evenings, when the sun appears close to the horizon. During such times, turbine blades can cast intermittent shadows that completely obscure sunlight each time a blade passes in front of the sun, causing a strobe-like effect. Shadow flicker can be an issue both indoors and outdoors when the sun is low in the sky.

26.  Prolonged exposure to the strobe-like effect of shadow flicker is not only distracting and annoying, it also causes headaches, nausea, and has been reported to cause seizures in certain individuals.

27.  Wind turbines can also be very noisy, exceeding prescribed decibel limits in many residential areas.

28.  In addition to the noise made by the mechanical equipment inside turbine towers, turbines also cause aerodynamic noise. Aerodynamic noise is created by wind passing over the blades of a wind turbine. The tip of a 40-50 meter blade can travel at speeds of over 140 miles per hour under normal operating conditions. As the wind passes over the moving blade, the blade interrupts the laminar flow of air, causing turbulence and noise. Although current blade designs attempt to minimize the amount of turbulence and noise caused by wind, it is not possible to completely eliminate turbulence or noise from turbines.

29.  Those who live near wind turbines have described the noise that turbines make as a rhythmical beating that sounds like “like a train that never gets there,” a “distant helicopter,” “thumping,” “thudding,” “pulsating,” and “beating.”

30.  In addition to this audible thumping, turbines also emit inaudible low frequency sound waves known as infrasound. Although these sound waves are below the range of sound audible to humans, prolonged exposure can disturb sleep and impair mental health. Infrasound has been linked to increased instances of insomnia, stress, stroke, heart failure, immune system problems, dizziness, vertigo, nausea, ringing in the ears, breathing problems, abdominal and chest pain, urinary problems, effects on speech, and headaches. Further, high noise environments negatively impact learning in young children, making it hard to concentrate and communicate with others.

31.  Health effects related to noise emissions from wind turbines have been observed in individuals living up to three miles from turbines, with the effects being greatest for those within one mile.

32.  Individuals who live near Defendant’s wind farms usually decide to move away from the farms shortly after their installation due to the various ways that turbines interfere with their use and enjoyment of their property, including issues stemming from shadow flicker, noise emissions, and related health issues. However, many who reside near Defendant’s wind farms are unable to move due to the financial strain caused by the decreased value of their property and the inability to find a buyer willing to live near a wind farm.

Facts Specific to Plaintiff

33.  Plaintiff owns a plot of land located at 2034 Rd. 1900, Blue Hill, Webster County, Nebraska. Plaintiff’s plot is approximately 11 acres in size, and Plaintiff currently resides in a single-family dwelling located on his land.

34.  Plaintiff’s plot has been in his family for decades. Plaintiff grew up on his land, and he purchased it from his father.

35.  Plaintiff’s property is adjacent to the Cottonwood Wind Farm, a wind turbine farm owned and operated by Defendant. Defendant began constructing the Cottonwood Wind Farm in or about mid 2017, and the turbines began commercial operation in or about November 2017.

36.  The Cottonwood Wind Farm is miles-long and consists of more than 40 wind turbines built and maintained by Defendant.

37.  The rear of Plaintiff’s residence faces the Cottonwood Wind Farm. In relation to Plaintiff’s property, the turbines are located to the east, south, and west of Plaintiff’s residence. The nearest turbine is located approximately 1,300 feet from Plaintiff’s property line.

38.  Since the turbines near Plaintiff’s property began operating, the turbines have negatively affected, invaded upon, and interfered with the Plaintiff’s use and enjoyment of his property by:

a.  creating sustained, incessant, cyclical, and highly disturbing and annoying audible noise created by and emitted from the turbines, often described as sounding like an airplane flying overhead that never flies away;

b.  creating vibrations or amplitude modulation of sound pressures or a pulse sensation when the rotating blades of the turbines pass by the turbine pedestal;

c.  creating a shadow flicker/strobe light effect that often covers all of Plaintiff’s property and intrudes into Plaintiff’s home when the rotating blades of the turbines pass in front of the sun;

d.  disrupting and/or preventing Plaintiffs’ ability to entertain guests or relatives, who are unable to visit for extended periods of time due to headaches and sleep disruption caused by the turbines;

e.  creating highly visible glare or glint which emanates from the turbines when they reflect sunlight;

f.  disrupting and obscuring Plaintiff’s views and vistas with turning blades, where such vistas were previously unobstructed;

g.  preventing Plaintiff from enjoying normal outdoor family activities on his property such as barbeques, and other recreational activities;

h.  Preventing Plaintiff from keeping his windows open due to persistent noise.

39.  As a direct and proximate result of Defendant’s ongoing interference with Plaintiff’s use and enjoyment of his property, Plaintiff has suffered and continues to suffer:

a.  an inability to sleep, repeated awakening during sleep, and sleep deprivation;

b.  headaches;

c.  vertigo and/or dizziness;

d.  nausea;

e.  stress and tension;

f.  fatigue;

g.  and anxiety and emotional distress.

40.  The Cottonwood Wind Farm and the impact it has had on Plaintiff’s property has thus substantially and unreasonably interfered with Plaintiff’s use and enjoyment of his property. On information and belief, Plaintiff’s property has decreased and will continue to decrease in value due to its proximity to Defendant’s wind turbines, and Plaintiff will be unable to lease or sell his property for its fair market value prior to installation of the turbines.

COUNT I: Private Nuisance …

COUNT II: Negligence …

Dated: March 1, 2019

Download original document: “Kohmetscher v. Nextera

Bookmark and Share


Date added:  March 2, 2019
Economics, Emissions, Environment, WildlifePrint storyE-mail story

Why Renewables Can’t Save the Planet

Author:  Shellenberger, Michael

When I was a boy, my parents would sometimes take my sister and me camping in the desert. A lot of people think deserts are empty, but my parents taught us to see the wildlife all around us, including hawks, eagles, and tortoises.

After college, I moved to California to work on environmental campaigns. I helped save the state’s last ancient redwood forest and blocked a proposed radioactive waste repository set for the desert.

In 2002, shortly after I turned 30, I decided I wanted to dedicate myself to addressing climate change. I was worried that global warming would end up destroying many of the natural environments that people had worked so hard to protect.

I thought the solutions were pretty straightforward: solar panels on every roof, electric cars in every driveway, etc. The main obstacles, I believed, were political. And so I helped organize a coalition of America’s largest labor unions and environmental groups. Our proposal was for a $300 billion dollar investment in renewables. We would not only prevent climate change but also create millions of new jobs in a fast-growing high-tech sector.

Our efforts paid off in 2007 when then-presidential candidate Barack Obama embraced our vision. Between 2009–15, the U.S. invested $150 billion dollars in renewables and other forms of clean tech. But right away we ran into trouble.

The first was around land use. Electricity from solar roofs costs about twice as much as electricity from solar farms, but solar and wind farms require huge amounts of land. That, along with the fact that solar and wind farms require long new transmissions lines, and are opposed by local communities and conservationists trying to preserve wildlife, particularly birds.

Another challenge was the intermittent nature of solar and wind energies. When the sun stops shining and the wind stops blowing, you have to quickly be able to ramp up another source of energy.

Happily, there were a lot of people working on solutions. One solution was to convert California’s dams into big batteries. The idea was that, when the sun was shining and the wind was blowing, you could pump water uphill, store it for later, and then run it over the turbines to make electricity when you needed it.

Other problems didn’t seem like such a big deal, on closer examination. For example, after I learned that house cats kill billions of birds every year it put into perspective the nearly one million birds killed by wind turbines.

It seemed to me that most, if not all, of the problems from scaling up solar and wind energies could be solved through more technological innovation.

But, as the years went by, the problems persisted and in some cases grew worse. For example, California is a world leader when it comes to renewables but we haven’t converted our dams into batteries, partly for geographic reasons. You need the right kind of dam and reservoirs, and even then it’s an expensive retrofit.

A bigger problem is that there are many other uses for the water that accumulates behind dams, namely irrigation and cities. And because the water in our rivers and reservoirs is scarce and unreliable, the water from dams for those other purposes is becoming ever-more precious.

Without large-scale ways to back-up solar energy California has had to block electricity coming from solar farms when it’s extremely sunny, or pay neighboring states to take it from us so we can avoid blowing-out our grid.

Despite what you’ve heard, there is no “battery revolution” on the way, for well-understood technical and economic reasons.

As for house cats, they don’t kill big, rare, threatened birds. What house cats kill are small, common birds, like sparrows, robins and jays. What kills big, threatened, and endangered birds—birds that could go extinct—like hawks, eagles, owls, and condors, are wind turbines.

In fact, wind turbines are the most serious new threat to important bird species to emerge in decades. The rapidly spinning turbines act like an apex predator which big birds never evolved to deal with.

Solar farms have similarly large ecological impacts. Building a solar farm is a lot like building any other kind of farm. You have to clear the whole area of wildlife.

In order to build one of the biggest solar farms in California the developers hired biologists to pull threatened desert tortoises from their burrows, put them on the back of pickup trucks, transport them, and cage them in pens where many ended up dying.

As we were learning of these impacts, it gradually dawned on me that there was no amount of technological innovation that could solve the fundamental problem with renewables.

You can make solar panels cheaper and wind turbines bigger, but you can’t make the sun shine more regularly or the wind blow more reliably. I came to understand the environmental implications of the physics of energy. In order to produce significant amounts of electricity from weak energy flows, you just have spread them over enormous areas. In other words, the trouble with renewables isn’t fundamentally technical—it’s natural.

Dealing with energy sources that are inherently unreliable, and require large amounts of land, comes at a high economic cost.

There’s been a lot of publicity about how solar panels and wind turbines have come down in cost. But those one-time cost savings from making them in big Chinese factories have been outweighed by the high cost of dealing with their unreliability.

Consider California. Between 2011–17 the cost of solar panels declined about 75 percent, and yet our electricity prices rose five times more than they did in the rest of the U.S. It’s the same story in Germany, the world leader in solar and wind energy. Its electricity prices increased 50 percent between 2006–17, as it scaled up renewables.

I used to think that dealing with climate change was going to be expensive. But I could no longer believe this after looking at Germany and France.

Germany’s carbon emissions have been flat since 2009, despite an investment of $580 billion by 2025 in a renewables-heavy electrical grid, a 50 percent rise in electricity cost.

Meanwhile, France produces one-tenth the carbon emissions per unit of electricity as Germany and pays little more than half for its electricity. How? Through nuclear power.

Then, under pressure from Germany, France spent $33 billion on renewables, over the last decade. What was the result? A rise in the carbon intensity of its electricity supply, and higher electricity prices, too.

What about all the headlines about expensive nuclear and cheap solar and wind? They are largely an illusion resulting from the fact that 70 to 80 percent of the costs of building nuclear plants are up-front, whereas the costs given for solar and wind don’t include the high cost of transmission lines, new dams, or other forms of battery.

It’s reasonable to ask whether nuclear power is safe, and what happens with its waste.

It turns out that scientists have studied the health and safety of different energy sources since the 1960s. Every major study, including a recent one by the British medical journal Lancet, finds the same thing: nuclear is the safest way to make reliable electricity.

Strange as it sounds, nuclear power plants are so safe for the same reason nuclear weapons are so dangerous. The uranium used as fuel in power plants and as material for bombs can create one million times more heat per its mass than its fossil fuel and gunpowder equivalents.

It’s not so much about the fuel as the process. We release more energy breaking atoms than breaking chemical bonds. What’s special about uranium atoms is that they are easy to split.

Because nuclear plants produce heat without fire, they emit no air pollution in the form of smoke. By contrast, the smoke from burning fossil fuels and biomass results in the premature deaths of seven million people per year, according to the World Health Organization.

Even during the worst accidents, nuclear plants release small amounts of radioactive particulate matter from the tiny quantities of uranium atoms split apart to make heat.

Over an 80-year lifespan, fewer than 200 people will die from the radiation from the worst nuclear accident, Chernobyl, and zero will die from the small amounts of radiant particulate matter that escaped from Fukushima.

As a result, the climate scientist James Hanson and a colleague found that nuclear plants have actually saved nearly two million lives to date that would have been lost to air pollution.

Thanks to its energy density, nuclear plants require far less land than renewables. Even in sunny California, a solar farm requires 450 times more land to produce the same amount of energy as a nuclear plant.

Energy-dense nuclear requires far less in the way of materials, and produces far less in the way of waste compared to energy-dilute solar and wind.

A single Coke can’s worth of uranium provides all of the energy that the most gluttonous American or Australian lifestyle requires. At the end of the process, the high-level radioactive waste that nuclear plants produce is the very same Coke can of (used) uranium fuel. The reason nuclear is the best energy from an environmental perspective is because it produces so little waste and none enters the environment as pollution.

All of the waste fuel from 45 years of the Swiss nuclear program can fit, in canisters, on a basketball court-like warehouse, where like all spent nuclear fuel, it has never hurt a fly.

By contrast, solar panels require 17 times more materials in the form of cement, glass, concrete, and steel than do nuclear plants, andcreate over 200 times more waste.

We tend to think of solar panels as clean, but the truth is that there is no plan anywhere to deal with solar panels at the end of their 20 to 25 year lifespan.
Experts fearsolar panels will be shipped, along with other forms of electronic waste, to be disassembled—or, more often, smashed with hammers—by poor communities in Africa and Asia, whose residents will be exposed to the dust from toxic heavy metals including lead, cadmium, and chromium.

Wherever I travel in the world I ask ordinary people what they think about nuclear and renewable energies. After saying they know next to nothing, they admit that nuclear is strong and renewables are weak. Their intuitions are correct. What most of us get wrong—understandably – is that weak energies are safer.

But aren’t renewables safer? The answer is no. Wind turbines, surprisingly, kill more people than nuclear plants.

In other words, the energy density of the fuel determines its environmental and health impacts. Spreading more mines and more equipment over larger areas of land is going to have larger environmental and human safety impacts.

It’s true that you can stand next to a solar panel without much harm while if you stand next to a nuclear reactor at full power you’ll die.

But when it comes to generating power for billions of people, it turns out that producing solar and wind collectors, and spreading them over large areas, has vastly worse impacts on humans and wildlife alike.

Our intuitive sense that sunlight is dilute sometimes shows up in films. That’s why nobody was shocked when the recent sequel of the dystopian sci-fi flick, “Blade Runner,” opened with a dystopian scene of California’s deserts paved with solar farms identical to the one that decimated desert tortoises.

Over the last several hundred years, human beings have been moving away from matter-dense fuels towards energy-dense ones. First we move from renewable fuels like wood, dung, and windmills, and towards the fossil fuels of coal, oil, and natural gas, and eventually to uranium.

Energy progress is overwhelmingly positive for people and nature. As we stop using wood for fuel we allow grasslands and forests to grow back, and the wildlife to return.

As we stop burning wood and dung in our homes, we no longer must breathe toxic indoor smoke. And as we move from fossil fuels to uranium we clear the outdoor air of pollution, and reduce how much we’ll heat up the planet.

Nuclear plants are thus a revolutionary technology—a grand historical break from fossil fuels as significant as the industrial transition from wood to fossil fuels before it.

The problem with nuclear is that it is unpopular, a victim of a 50 year-long concerted effort by fossil fuel, renewable energy, anti-nuclear weapons campaigners, and misanthropic environmentalists to ban the technology.

In response, the nuclear industry suffers battered wife syndrome, and constantly apologizes for its best attributes, from its waste to its safety.

Lately, the nuclear industry has promoted the idea that, in order to deal with climate change, “we need a mix of clean energy sources,” including solar, wind and nuclear. It was something I used to believe, and say, in part because it’s what people want to hear. The problem is that it’s not true.

France shows that moving from mostly nuclear electricity to a mix of nuclear and renewables results in more carbon emissions, due to using more natural gas, and higher prices, to the unreliability of solar and wind.

Oil and gas investors know this, which is why they made a political alliance with renewables companies, and why oil and gas companies have been spending millions of dollars on advertisements promoting solar, and funneling millions of dollars to said environmental groups to provide public relations cover.

What is to be done? The most important thing is for scientists and conservationists to start telling the truth about renewables and nuclear, and the relationship between energy density and environmental impact.

Bat scientists recently warned that wind turbines are on the verge of making one species, the Hoary bat, a migratory bat species, go extinct.

Another scientist who worked to build that gigantic solar farm in the California desert told High Country News, “Everybody knows that translocation of desert tortoises doesn’t work. When you’re walking in front of a bulldozer, crying, and moving animals, and cacti out of the way, it’s hard to think that the project is a good idea.”

I think it’s natural that those of us who became active on climate change gravitated toward renewables. They seemed like a way to harmonize human society with the natural world. Collectively, we have been suffering from an appeal-to-nature fallacy no different from the one that leads us to buy products at the supermarket labeled “all natural.” But it’s high time that those of us who appointed ourselves Earth’s guardians should take a second look at the science, and start questioning the impacts of our actions.

Now that we know that renewables can’t save the planet, are we really going to stand by and let them destroy it?

Michael Shellenberger is a Time Magazine “Hero of the Environment,” and president of Environmental Progress, an independent research and policy organization.

Originally published on February 27, 2019, at quillette.com

Bookmark and Share


Date added:  January 26, 2019
Economics, Environment, Health, TexasPrint storyE-mail story

Local Tax Abatements and the Texas Wind Industry: How Chapters 312 and 313 Are Scarring Rural Texas

Author:  Greer, Stanley

KEY POINTS:

Stanley T. Greer, Texas Public Policy Foundation
January 2019

Download original document: “Tax Abatements and the Texas Wind Energy Industry

Bookmark and Share


Earlier Documents »

Get the Facts Follow Wind Watch on Twitter

Wind Watch on Facebook

Share

CONTACT DONATE PRIVACY ABOUT SEARCH
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.
Share

 Follow: