[ posts only (not attachments) ]

ISSUES/LOCATIONS

View titles only
(by date)
List all documents, ordered…

By Title

By Author

View PDF, DOC, PPT, and XLS files on line
RSS

Add NWW documents to your site (click here)

Sign up for daily updates

Keep Wind Watch online and independent!

Donate $10

Donate $5

News Watch

Selected Documents

Research Links

Alerts

Press Releases

FAQs

Publications & Products

Photos & Graphics

Videos

Allied Groups

Resource Documents: Impacts (128 items)

RSSImpacts

Also see NWW "costs/benefits" FAQ

Unless indicated otherwise, documents presented here are not the product of nor are they necessarily endorsed by National Wind Watch. These resource documents are shared here to assist anyone wishing to research the issue of industrial wind power and the impacts of its development. The information should be evaluated by each reader to come to their own conclusions about the many areas of debate. • The copyrights reside with the sources indicated. As part of its noncommercial effort to present the environmental, social, scientific, and economic issues of large-scale wind power development to a global audience seeking such information, National Wind Watch endeavors to observe “fair use” as provided for in section 107 of U.S. Copyright Law and similar “fair dealing” provisions of the copyright laws of other nations.


Date added:  May 13, 2022
U.K., WildlifePrint storyE-mail story

Impact assessments of wind farms on seabird populations that overlook existing drivers of demographic change should be treated with caution

Abstract – Population viability analyses (PVA) are now routinely used during the consenting process for offshore wind energy developments to assess potential impacts to vulnerable species, such as seabirds. These models are typically based on mean vital rates, such as survival and fecundity, with some level of environmental stochasticity (i.e., temporal variation). However, many species of seabird are experiencing population decline due to temporal (i.e., directional) trends in their vital rates. We assess the prevalence of temporal trends in rates of fecundity for a sentinel species of seabird, the black-legged kittiwake Rissa tridactyla, and examine how accounting for these relationships affects the predictive accuracy of PVA, as well as the projected population response to an extrinsic threat. We found that temporal trends in kittiwake rates of fecundity are widespread, and that including these trends in PVA assessments dramatically influences the projected rate of population decline. We advocate that model validation become a prerequisite step in seabird PVA assessments to identify potential biases influencing the projected population response. We also argue that environmental factors driving current population dynamics need to be incorporated in PVA impact assessments as potential “worst-case” scenarios. These findings have immediate application for improving and reducing uncertainty in impact assessments conducted as part of the consenting process for offshore wind energy developments.

a) Temporal (i.e., directional) trends in rates of fecundity are widespread amongst populations of kittiwakes in the UK and Ireland. Colonies with significant temporal trends in fecundity shown as red circles, those with stable fecundity shown as blue triangles. Skomer (South Wales) shown as an open red circle. (b) Fecundity of kittiwakes on Skomer Island declined at a constant rate between 1989 and 2020. Dashed line shows a linear regression fitted through the data. (c) We found high variation in the strength of temporal trends estimated using colony-specific Poisson GLMs. Slope coefficient values shown with standard error. Colonies with directional fecundity shown as red circles, those with stable fecundity shown as blue triangles. Skomer shown as open red circle. Gray dashed line at zero for reference.

Catharine Horswill, ZSL Institute of Zoology, London, Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, and Department of Zoology, University of Cambridge, UK
Julie A.O. Miller, Marine Scotland Science, Marine Laboratory, Aberdeen, UK
Matt J. Wood, School of Natural and Social Sciences, University of Gloucestershire, Cheltenham, UK

Conservation Science and Practice. 13 March 2022. doi: 10.1111/csp2.12644

Download original document: “Impact assessments of wind farms on seabird populations that overlook existing drivers of demographic change should be treated with caution

Bookmark and Share


Date added:  April 30, 2022
WildlifePrint storyE-mail story

Effects of Anthropogenic Electromagnetic Fields (EMF) on the Early Development of Two Commercially Important Crustaceans, European Lobster, Homarus gammarus (L.) and Edible Crab, Cancer pagurus (L.)

Author:  Harsanyi, Petra; Scott, Kevin; et al.

Abstract – Proposed offshore windfarm sites could overlap with the brooding and spawning habitats of commercially important crustacea, including European lobster, Homarus gammarus and Edible crab, Cancer pagurus. Concerns have been raised on the biological effects of Electromagnetic Fields (EMFs) emitted from subsea power cables on the early life history of these species. In this study, ovigerous female H. gammarus and C. pagurus were exposed to static (Direct Current, DC) EMFs (2.8 mT) throughout embryonic development. Embryonic and larval parameters, deformities, and vertical swimming speed of freshly hatched stage I lobster and zoea I crab larvae were assessed. EMF did not alter embryonic development time, larval release time, or vertical swimming speed for either species. Chronic exposure to 2.8 mT EMF throughout embryonic development resulted in significant differences in stage-specific egg volume and resulted in stage I lobster and zoea I crab larvae exhibiting decreased carapace height, total length, and maximum eye diameter. An increased occurrence of larval deformities was observed in addition to reduced swimming test success rate amongst lobster larvae. These traits may ultimately affect larval mortality, recruitment and dispersal. This study increases our understanding on the effects of anthropogenic, static EMFs on crustacean developmental biology and suggests that EMF emissions from subsea power cables could have a measurable impact on the early life history and consequently the population dynamics of H. gammarus and C. pagurus.

Petra Harsanyi, Kevin Scott, Blair A. A. Easton, Guadalupe de la Cruz Ortiz, Erica C. N. Chapman, Althea J. R. Piper, Corentine M. V. Rochas, and Alastair R. Lyndon
St Abbs Marine Station, The Harbour, St Abbs, Scottish Borders, Eyemouth, UK

Journal of Marine Science and Engineering 2022, 10(5), 564; doi:10.3390/jmse10050564

Download original document: “The Effects of Anthropogenic Electromagnetic Fields (EMF) on the Early Development of Two Commercially Important Crustaceans, European Lobster, Homarus gammarus (L.) and Edible Crab, Cancer pagurus (L.)

Bookmark and Share


Date added:  April 12, 2022
Africa, Europe, WildlifePrint storyE-mail story

Hotspots in the grid: Avian sensitivity and vulnerability to collision risk from energy infrastructure interactions in Europe and North Africa

Author:  Gauld, Jethro; et al.

Abstract

Wind turbines and power lines can cause bird mortality due to collision or electrocution. The biodiversity impacts of energy infrastructure (EI) can be minimised through effective landscape-scale planning and mitigation. The identification of high-vulnerability areas is urgently needed to assess potential cumulative impacts of EI while supporting the transition to zero carbon energy.

We collected GPS location data from 1,454 birds from 27 species susceptible to collision within Europe and North Africa and identified areas where tracked birds are most at risk of colliding with existing EI. Sensitivity to EI development was estimated for wind turbines and power lines by calculating the proportion of GPS flight locations at heights where birds were at risk of collision and accounting for species’ specific susceptibility to collision. We mapped the maximum collision sensitivity value obtained across all species, in each 5 × 5 km grid cell, across Europe and North Africa. Vulnerability to collision was obtained by overlaying the sensitivity surfaces with density of wind turbines and transmission power lines.

Results: Exposure to risk varied across the 27 species, with some species flying consistently at heights where they risk collision. For areas with sufficient tracking data within Europe and North Africa, 13.6% of the area was classified as high sensitivity to wind turbines and 9.4% was classified as high sensitivity to transmission power lines. Sensitive areas were concentrated within important migratory corridors and along coastlines. Hotspots of vulnerability to collision with wind turbines and transmission power lines (2018 data) were scattered across the study region with highest concentrations occurring in central Europe, near the strait of Gibraltar and the Bosporus in Turkey.
Synthesis and applications: We identify the areas of Europe and North Africa that are most sensitive for the specific populations of birds for which sufficient GPS tracking data at high spatial resolution were available. We also map vulnerability hotspots where mitigation at existing EI should be prioritised to reduce collision risks. As tracking data availability improves our method could be applied to more species and areas to help reduce bird-EI conflicts.

Jethro G. Gauld (School of Environmental Sciences, University of East Anglia, Norwich, UK), João P. Silva, Philip W. Atkinson, Paul Record, Marta Acácio, Volen Arkumarev, Julio Blas, Willem Bouten, Niall Burton, Inês Catry, Jocelyn Champagnon, Gary D. Clewley, Mindaugas Dagys, Olivier Duriez, Klaus-Michael Exo, Wolfgang Fiedler, Andrea Flack, Guilad Friedemann, Johannes Fritz, Clara Garcia-Ripolles, Stefan Garthe, Dimitri Giunchi, Atanas Grozdanov, Roi Harel, Elizabeth M. Humphreys, René Janssen, Andrea Kölzsch, Olga Kulikova, Thomas K. Lameris, Pascual López-López, Elizabeth A. Masden, Flavio Monti, Ran Nathan, Stoyan Nikolov, Steffen Oppel, Hristo Peshev, Louis Phipps, Ivan Pokrovsky, Viola H. Ross-Smith, Victoria Saravia, Emily S. Scragg, Andrea Sforzi, Emilian Stoynov, Chris Thaxter, Wouter Van Steelant, Mariëlle van Toor, Bernd Vorneweg, Jonas Waldenström, Martin Wikelski, Ramūnas Žydelis, Aldina M.A. Franco

Journal of Applied Biology. First published: 11 April 2022
doi: 10.1111/1365-2664.14160

Download original document: “Hotspots in the grid: Avian sensitivity and vulnerability to collision risk from energy infrastructure interactions in Europe and North Africa

Bookmark and Share


Date added:  April 1, 2022
California, Canada, Mexico, U.S., WildlifePrint storyE-mail story

Vulnerability of avian populations to renewable energy production

Author:  Conkling, Tara; et al.

Abstract: Renewable energy production can kill individual birds, but little is known about how it affects avian populations. We assessed the vulnerability of populations for 23 priority bird species killed at wind and solar facilities in California, USA. Bayesian hierarchical models suggested that 48% of these species were vulnerable to population-level effects from added fatalities caused by renewables and other sources. Effects of renewables extended far beyond the location of energy production to impact bird populations in distant regions across continental migration networks. Populations of species associated with grasslands where turbines were located were most vulnerable to wind. Populations of nocturnal migrant species were most vulnerable to solar, despite not typically being associated with deserts where the solar facilities we evaluated were located. Our findings indicate that addressing declines of North American bird populations requires consideration of the effects of renewables and other anthropogenic threats on both nearby and distant populations of vulnerable species.

Tara J. Conkling and Todd E. Katzner, Forest and Rangeland Ecosystem Science Center, U.S. Geological Survey, Boise, Idaho
Hannah B. Vander Zanden, Department of Biology, University of Florida, Gainesville, Florida
Taber D. Allison, Renewable Energy Wildlife Institute, Washington, DC
Jay E. Diffendorfer, Geosciences and Environmental Change Science Center, U.S. Geological Survey, Denver, Colorado
Thomas V. Dietsch, Carlsbad Fish and Wildlife Office, U.S. Fish and Wildlife Service, Carlsbad, California
Adam E. Duerr, Bloom Research Inc., Santa Ana, California
Amy L. Fesnock, Desert District Office, U.S. Bureau of Land Management, Palm Springs, California
Rebecca R. Hernandez, Department of Land, Air and Water Resources, and Wild Energy Initiative, John Muir Institute of the Environment, University of California, Davis, California
Scott R. Loss, Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma
David M. Nelson, Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, Maryland
Peter M. Sanzenbacher, Palm Springs Fish and Wildlife Office, U.S. Fish and Wildlife Service, Palm Springs, California
Julie L. Yee, Western Ecological Research Center, U.S. Geological Survey, Santa Cruz, California

Royal Society Open Science March 2022, Volume 9 Issue 3. doi:10.1098/rsos.211558

Download original document: “Vulnerability of avian populations to renewable energy production

Bookmark and Share


Earlier Documents »

Get the Facts Follow Wind Watch on Twitter

Wind Watch on Facebook

Share

CONTACT DONATE PRIVACY ABOUT SEARCH
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.
Share

 Follow: