ISSUES/LOCATIONS

Documents Home
View PDF, DOC, PPT, and XLS files on line
RSS

Add NWW documents to your site (click here)

Sign up for daily updates

Keep Wind Watch online and independent!

Donate $10

Donate $5

News Watch

Selected Documents

Research Links

Alerts

Press Releases

FAQs

Publications & Products

Photos & Graphics

Videos

Allied Groups

Magnetic fields produced by subsea high-voltage direct current cables reduce swimming activity of haddock larvae (Melanogrammus aeglefinus)  

Author:  | Norway, Wildlife

Abstract – High-voltage direct current (HVDC) subsea cables are used to transport power between locations and from/to nearshore and offshore facilities. HVDC cables produce magnetic fields (B-fields) that could impact marine fish. Atlantic haddock (Melanogrammus aeglefinus) is a demersal fish that is at risk of exposure to anthropogenic B-fields. Their larvae drift over the continental shelf, and use the Earth’s magnetic field for orientation during dispersal. Therefore, anthropogenic magnetic fields from HVDC cables could alter their behavior. We tested the behavior of 92 haddock larvae using a setup designed to simulate the scenario of larvae drifting past a B-field in the intensity range of that produced by a DC subsea cable. We exposed the larvae to a B-field intensity ranging from 50  to 150 µT in a raceway tank. Exposure to the B-field did not affect the spatial distribution of haddock larvae in the raceway. Larvae were categorized by differences in their exploratory behavior in the raceway. The majority (78%) of larvae were nonexploratory, and exposure to the artificial B-field reduced their median swimming speed by 60% and decreased their median acceleration by 38%. There was no effect on swimming of the smaller proportion (22%) of exploratory larvae. These observations support the conclusion that the swimming performance of nonexploratory haddock larvae would be reduced following exposure to B-field from HVDC cables. The selective impact on nonexploratory individuals, and the lack of impact on exploratory individuals, could have population-scale implications for haddock in the wild.

Alessandro Cresci, Caroline M.F. Durif, Torkel Larsen, Reidun Bjelland, Anne Berit Skiftesvik, Howard I. Browman
Institute of Marine Research, Austevoll Research Station, Storebø, Norway

PNAS Nexus, Volume 1, Issue 4, September 2022, pgac175, doi:10.1093/pnasnexus/pgac175
Published: 27 August 2022

Download original document: “Magnetic fields produced by subsea high-voltage direct current cables reduce swimming activity of haddock larvae (Melanogrammus aeglefinus)

This material is the work of the author(s) indicated. Any opinions expressed in it are not necessarily those of National Wind Watch.

The copyright of this material resides with the author(s). As part of its noncommercial effort to present the environmental, social, scientific, and economic issues of large-scale wind power development to a global audience seeking such information, National Wind Watch endeavors to observe “fair use” as provided for in section 107 of U.S. Copyright Law and similar “fair dealing” provisions of the copyright laws of other nations. Queries e-mail.

Wind Watch relies entirely
on User Funding
Donate $5 PayPal Donate

Share:

Get the Facts Follow Wind Watch on Twitter

Wind Watch on Facebook

Share

CONTACT DONATE PRIVACY ABOUT SEARCH
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.
Share

 Follow: