[ posts only (not attachments) ]

Go to multi-category search »

ISSUES/LOCATIONS

View titles only
(by date)
List all documents, ordered…

By Title

By Author

View PDF, DOC, PPT, and XLS files on line
RSS

Add NWW documents to your site (click here)

Sign up for daily updates

Keep Wind Watch online and independent!

Donate $10

Donate $5

News Watch

Selected Documents

Research Links

Alerts

Press Releases

FAQs

Publications & Products

Photos & Graphics

Videos

Allied Groups

Resource Documents: Australia (141 items)

RSSAustralia

Unless indicated otherwise, documents presented here are not the product of nor are they necessarily endorsed by National Wind Watch. These resource documents are shared here to assist anyone wishing to research the issue of industrial wind power and the impacts of its development. The information should be evaluated by each reader to come to their own conclusions about the many areas of debate. • The copyrights reside with the sources indicated. As part of its noncommercial effort to present the environmental, social, scientific, and economic issues of large-scale wind power development to a global audience seeking such information, National Wind Watch endeavors to observe “fair use” as provided for in section 107 of U.S. Copyright Law and similar “fair dealing” provisions of the copyright laws of other nations.


Date added:  June 18, 2019
Australia, NoisePrint storyE-mail story

Prevalence of wind farm amplitude modulation at long-range residential locations

Author:  Hansen, Kristy; Nguyen, Phuc; Zajamšek, Branko; Catcheside, Peter; and Hansen, Colin

Abstract:
The presence of amplitude modulation (AM) in wind farm noise has been shown to result in increased annoyance. Therefore, it is important to determine how often this characteristic is present at residential locations near a wind farm. This study investigates the prevalence and characteristics of wind farm AM at 9 different residences located near a South Australian wind farm that has been the subject of complaints from local residents. It is shown that an audible indoor low-frequency tone was amplitude modulated at the blade-pass frequency for 20% of the time up to a distance of 2.4 km. The audible AM occurred for a similar percentage of time between wind farm percentage power capacities of 40% and 85%, indicating that it is important that AM analysis is not restricted to high power output conditions only. Although the number of AM events is shown to reduce with distance, audible indoor AM still occurred for 16% of the time at a distance of 3.5 km. At distances of 7.6 and 8.8 km, audible AM was only detected on one occasion. At night-time, audible AM occurred indoors at residences located as far as 3.5 km from the wind farm for up to 22% of the time.

Kristy L. Hansen, Phuc Nguyen, College of Science and Engineering, Flinders University, Tonsley, Australia
Branko Zajamšek, Peter Catcheside, College of Medicine, Flinders University, Bedford Park, Australia
Colin H. Hansen, School of Mechanical Engineering, The University of Adelaide, Adelaide, Australia

Journal of Sound and Vibration
Volume 455, 1 September 2019, Pages 136-149
doi: 10.1016/j.jsv.2019.05.008

Download original document: “Prevalence of wind farm amplitude modulation at long-range residential locations

Bookmark and Share


Date added:  December 28, 2018
Australia, NoisePrint storyE-mail story

Characterizing tonal amplitude modulation of wind farm noise

Author:  Nguyen, Phuc; Hansen, Kristy; and Zajamšek, Branko

[ABSTRACT] In addition to the overall noise level, periodic variations in the loudness of wind turbine noise, known as Amplitude Modulation (AM), also significantly contribute to the annoyance experienced by residents living near wind farms. Due to the high dependence of AM on meteorological conditions and the type of wind turbines, the level and duration of AM are hard to predict. These characteristics have an important impact on the annoyance response of residents. The level of annoyance is expected to depend on the AM depth, the number of AM occurrences and the AM continuity. The aim of this paper is to investigate AM characteristics in the vicinity of two wind farms in South Australia. It has been found that to successfully quantify tonal AM based on the Reference Method proposed by the UK Institute of Acoustics, removing the A-weighting, changing the range of band-pass filter frequency and reducing the prominence ratio are also necessary. AM density at night-time is much higher than at day time (25% versus 15%). However, there is not significant difference between AM depth at night-time and day time. Furthermore, AM is more likely to occur when the wind turbines are operating significantly below their maximum rated power.

Duc-Phuc Nguyen, Kristy Hansen
College of Science and Engineering
Branko Zajamsek
Adelaide Institute for Sleep Health
Flinders University, Bedford Park, Adelaide, SA, Australia

Download original document: “Characterizing tonal amplitude modulation of wind farm noise” (22 MB)

Bookmark and Share


Date added:  December 1, 2018
Australia, EnvironmentPrint storyE-mail story

Severe localised grain production losses from atypical frosts in the Marrabel Valley Catchment 2011–2014

Author:  Faint, John; and Morris, Mary

For the four cropping seasons from 2011- 2014, a majority of farmers in the Marrabel Valley have experienced unprecedented and widespread frost damage of grain crops on sloping paddocks high above the valley floor. Historically these areas have not been affected by frost as the steep slope of the valley sides ensures that cold air flows towards the lower lying areas where it is normal for frost to form.

The onset of these seasons of atypical and the abnormal frosts and frost damage coincides with the commencement of operation of an 18 km long wind farm which is located on a central ridgeline in the clearly defined catchment area. Four contiguous years of significant production losses have prompted this call for an investigation into whether the wind farm is affecting the near surface meteorology of the Marrabel Catchment. This Catchment covers 21,392 hectares and contains some of the most highly productive and high value cropping land in South Australia, consequently further investigation is justified.

[Submitted to the South Australian Grains Industry Trust (SAGIT), February 2015, as part of a researchapplication, which was not funded. Atypical frosts have continued to occur with millions of dollars worth of damage every year.]

Download original document: “Severe localised grain production losses from atypical frosts in the Marrabel Valley Catchment 2011–2014

Bookmark and Share


Date added:  December 9, 2017
Australia, Health, Law, NoisePrint storyE-mail story

Summary of the Effect of the Medical and Scientific Evidence

Author:  White, Richard; and Bean, Katherine

On our analysis, a number of propositions emerge from the medical and scientific evidence. Some of those propositions had unanimous support by the relevant experts, and others had the support of most.

The propositions which we understand have unanimous support from the relevant experts or are not contested include the following:

We consider that the evidence justifies the following conclusions:

Paragraphs 467–470, File Number 2015/4289
Decision and Reasons for Decision
Administrative Appeals Tribunal, Adelaide
Taxation & Commercial Division
Re Waubra Foundation (Applicant) and Commissioner of Australian Charities and Not-for-profits Commission (Respondent)

The Honourable Justice White, Deputy President
Deputy President K Bean
4 December 2017

Download complete file.

Bookmark and Share


« Later DocumentsHomeEarlier Documents »

Get the Facts Follow Wind Watch on Twitter

Wind Watch on Facebook

Share

CONTACT DONATE PRIVACY ABOUT SEARCH
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.
Share

 Follow: