[ posts only (not attachments) ]

ISSUES/LOCATIONS

View titles only
(by date)
List all documents, ordered…

By Title

By Author

View PDF, DOC, PPT, and XLS files on line
RSS

Add NWW documents to your site (click here)

Sign up for daily updates

Keep Wind Watch online and independent!

Donate $10

Donate $5

News Watch

Selected Documents

Research Links

Alerts

Press Releases

FAQs

Publications & Products

Photos & Graphics

Videos

Allied Groups

Resource Documents: Impacts (128 items)

RSSImpacts

Also see NWW "costs/benefits" FAQ

Unless indicated otherwise, documents presented here are not the product of nor are they necessarily endorsed by National Wind Watch. These resource documents are shared here to assist anyone wishing to research the issue of industrial wind power and the impacts of its development. The information should be evaluated by each reader to come to their own conclusions about the many areas of debate. • The copyrights reside with the sources indicated. As part of its noncommercial effort to present the environmental, social, scientific, and economic issues of large-scale wind power development to a global audience seeking such information, National Wind Watch endeavors to observe “fair use” as provided for in section 107 of U.S. Copyright Law and similar “fair dealing” provisions of the copyright laws of other nations.


Date added:  July 21, 2021
Scotland, WildlifePrint storyE-mail story

Responses of dispersing GPS-tagged Golden Eagles (Aquila chrysaetos) to multiple wind farms across Scotland

Abstract: Wind farms may have two broad potential adverse effects on birds via antagonistic processes: displacement from the vicinity of turbines (avoidance), or death through collision with rotating turbine blades. Large raptors are often shown or presumed to be vulnerable to collision and are demographically sensitive to additional mortality, as exemplified by several studies of the Golden Eagle Aquila chrysaetos. Previous findings from Scottish Eagles, however, have suggested avoidance as the primary response. Our study used data from 59 GPS-tagged Golden Eagles with 28 284 records during natal dispersal before and after turbine operation &ly; 1 km of 569 turbines at 80 wind farms across Scotland. We tested three hypotheses using measurements of tag records’ distance from the hub of turbine locations: (1) avoidance should be evident; (2) older birds should show less avoidance (i.e. habituate to turbines); and (3) rotor diameter should have no influence (smaller diameters are correlated with a turbine’s age, in examining possible habituation). Four generalized linear mixed models (GLMMs) were constructed with intrinsic habitat preference of a turbine location using Golden Eagle Topography (GET) model, turbine operation status (before/after), bird age and rotor diameter as fixed factors. The best GLMM was subsequently verified by k-fold cross-validation and involved only GET habitat preference and presence of an operational turbine. Eagles were eight times less likely to be within a rotor diameter’s distance of a hub location after turbine operation, and modelled displacement distance was 70 m. Our first hypothesis expecting avoidance was supported. Eagles were closer to turbine locations in preferred habitat but at greater distances after turbine operation. Results on bird age (no influence to 5+ years) rejected hypothesis 2, implying no habituation. Support for hypothesis 3 (no influence of rotor diameter) also tentatively inferred no habituation, but data indicated birds went slightly closer to longer rotor blades although not to the turbine tower. We proffer that understanding why avoidance or collision in large raptors may occur can be conceptually envisaged via variation in fear of humans as the ‘super predator’ with turbines as cues to this life-threatening agent.

Alan H. Fielding, Natural Research Ltd, Brathens, Aberdeenshire
David Anderson, Forestry and Land Scotland, Aberfoyle
Stuart Benn, RSPB Scotland, Inverness
Roy Dennis, Roy Dennis Wildlife Foundation, Forres
Matthew Geary, Department of Biological Sciences, University of Chester
Ewan Weston, Natural Research Ltd, Brathens, Aberdeenshire
D. Philip Whitfield, Natural Research Ltd, Brathens, Aberdeenshire

Ibis: International Journal of Avian Science
Published on line ahead of print 20 July 2021. doi: 10.1111/ibi.12996

Bookmark and Share


Date added:  July 4, 2021
California, Economics, New Mexico, Technology, Texas, U.S.Print storyE-mail story

How Green Mandates Are Undermining the Affordability and Reliability of Electricity

Author:  Power the Future

On Earth Day, President Biden pledged under the Paris Climate Agreement that the United States would reduce greenhouse gas emissions by 50 percent in ten years (below 2005 levels). This goal is as preposterous as it is impractical. It’s clear that the Biden Administration is misleading the American people to impose the Green Agenda which includes stifling bureaucratic manipulation in every sector of the economy. Power The Future’s latest study, “Lights Out: How Green Mandates Are Undermining the Affordability and Reliability of Electricity,” explores the real costs and benefits of Biden’s plan.

Biden’s Climate Envoy John Kerry has himself admitted: “Almost 90 percent of all of the planet’s global emissions come from outside of U.S. borders. We could go to zero tomorrow and the problem isn’t solved.”

On this, as in little else, Kerry is right: Even assuming every signatory to the Paris Agreement (the US included, as pledged under President Obama) fulfilled its emissions commitments, the climate impact “is minuscule.” In measuring the temperature impact of every nation fulfilling every promise by 2030, the total temperature reduction would be 0.048°C (0.086°F) by 2100. Carry those assumptions out another 70 years, and Paris would reduce temperatures by just 0.17°C by 2100.

So what can we realistically expect from the types of proposals Biden is pushing? PTF looked at the results of renewable mandates in Texas, California, and New Mexico to find out.

Based on data from those states, it is clear that Biden’s pledge under the Paris Agreement sets the country on a dangerous trajectory. Green radicals will use it to push their fever dream of a 100 percent “clean” grid, powered by sources that don’t work at night or on cloudy days. These policies destroy good-paying jobs and raise energy prices. It’s time to wake up to these realities with policies that promote fuel diversity, reliability, and affordability—before it’s too late for all of us.

Download original document: “How Green Mandates Are Undermining the Affordability and Reliability of Electricity

Bookmark and Share


Date added:  June 29, 2021
EnvironmentPrint storyE-mail story

Coastal and offshore based wind power may be a significant contributor of micro and nano sized particles containing BPA and other harmful chemicals to the environment through leading edge erosion

Author:  Green Warriors of Norway (Norges Miljøvernforbund)

Green Warriors of Norway/Norges Miljøvernforbund (NMF) raise several concerns regarding the increased use of Bisphenol A (BPA) and related chemicals and their impact on onshore and offshore environment and ecosystems. Much of the current and future impact will come from relatively new sources, and from sources that will increase in new areas and environments. One of the main sources of concern is from micro and nano sized particles released into the environment from epoxy-based products by erosion. Such particles that contain BPA related substances will protect its containing chemicals and protect them from degradation while they remain inside the particle materials, and like a Trojan Horse, be released into the food chain through organisms when in contact with their digestive system. It is also concerning that research show that BPA do generational harm to organisms according to a recent study of Rainbow trout.

These factors and more raise serious concerns as the development and placement of new installations reliant upon BPA containing epoxy structures reaches new frontiers with harsher and more challenging weather conditions. While chemicals like BPA in its pure form is degraded normally in a normal environment, salt water and colder temperatures in more arctic and sub-arctic environments will likely impact the rate of degradation significantly, which make them remain a potent biochemical pollutant for a much longer period than in more tempered environments. Within the protection of a micro-sized particle, they will remain a potent biochemical pollutant significantly longer than the chemical in its pure form.

With micro and nano sized particles found in larger and larger quantities on the farthest parts of the planet, from the furthest away glaciers to sediments on the deepest seabed, the concern is that our human impact on the various onshore and offshore environments accumulate and is irreversible.

We therefore need much stricter regulations and also serious incentives for the industry to find better alternatives and in the meantime stop the placement of new installations that release micro and nano sized particles containing BPA and similar chemicals to the environment.

You will find our concerns and demands in more detail on the following pages.

Download original document: “Bisphenol A: comments and evidence re: Registration, Evaluation, Authorisation and Restriction of Chemicals, European Chemicals Agency

Bookmark and Share


Date added:  June 28, 2021
EnvironmentPrint storyE-mail story

Emissions from corrosion protection systems of offshore wind farms: Evaluation of the potential impact on the marine environment

Author:  Kirchgeorg, Torben; Bell, Anna Maria; et al.

Abstract: Offshore wind energy is a fast growing sector of renewable energies worldwide. This will change the marine environment and thus, a wide range of environmental impacts of offshore wind farms are subject of current research. Here we present an overview about chemical emissions from corrosion protection systems, discuss their relevance and potential impact to the marine environment, and suggest strategies to reduce their emissions. Corrosion is a general problem for offshore infrastructures and corrosion protection systems are necessary to maintain the structural integrity. These systems are often in direct contact with seawater and have different potentials for emissions, e.g. galvanic anodes emitting substantial amounts of metals. Organic coatings may release organic substances due to weathering and/or leaching. Current assumptions suggest a low environmental impact, but monitoring data is not sufficient to assess the environmental impact of this new source.

T. Kirchgeorg, I. Weinberg, M. Hörnig, Section of Marine Sediments, Department of Marine Science, Federal Maritime and Hydrographic Agency, Hamburg, Germany
R. Baier, M.J. Schmid, Steel Structures & Corrosion Protection Section, Department of Structural Engineering, Federal Waterways Engineering and Research Institute, Karlsruhe, Germany
B. Brockmeyerc, Section of Environmentally Hazardous Substances, Department of Marine Science, Federal Maritime and Hydrographic Agency, Hamburg, Germany

Marine Pollution Bulletin
Volume 136, November 2018, Pages 257-268
doi: 10.1016/j.marpolbul.2018.08.058


Also see:

Ecotoxicological characterization of emissions from steel coatings in contact with water

Abstract: In order to prevent corrosion damage, steel structures need to be protected. Coating systems achieve this by the isolation of the steel from its environment. Common binding agents are epoxide and polyurethane resins which harden by polyaddition reactions. In contact with water, various organic substances might be leached out and released into the aquatic environment potentially causing adverse effects. So far, no legal requirements are mandatory for the environmental sustainability of coating systems. To characterize emissions from steel coatings, recommendations for the ecotoxicological assessment of construction products were utilized. Seven different coating systems based on epoxide or polyurethane resins were leached in 8 steps (6 h–64 d), followed by the testing of acute toxic effects on bacteria and algae as well as estrogen-like and mutagenic effects. In addition, chemical analysis by GC-MS was performed to identify potentially toxic compounds released from the coating systems. Two systems tested did not show any significant effects in the bioassays. One coating system caused significant algal toxicity, none was found to cause mutagenic effects. The other coating systems mainly showed estrogenic effects and bacterial toxicity. The effects increased with increasing leaching time. 4-tert-butylphenol, which is used in epoxy resins as a hardener, was identified as the main contributor to acute and estrogenic effects in two coatings. The release mechanism of 4-tert-butylphenol was characterized by two different modelling approaches. It was found that the release from the most toxic coating is not explainable by an elevated content of 4-tert-butylphenol but more likely by the release mechanism that – in contrast to the less toxic coating – is controlled not only by diffusion. This finding might indicate a sub-optimal formulation of this coating system resulting in a less stable layer and thus an increased release of toxic compounds.

Anna Maria Bell, Georg Reifferscheid, Sebastian Buchinger, Thomas Ternes, Federal Institute of Hydrology, Koblenz, Germany
Roland Baier, Section B2 – Steel Structures and Corrosion Protection, Federal Waterways Engineering and Research Institute, Karlsruhe, Germany
Birgit Kocher, Department V3 – Environmental Protection, Federal Highway Research Institute, Bergisch Gladbach, Germany

Water Research
Volume 173, 15 April 2020, 115525
doi: 10.1016/j.watres.2020.115525

Bookmark and Share


Earlier Documents »

Get the Facts Follow Wind Watch on Twitter

Wind Watch on Facebook

Share

CONTACT DONATE PRIVACY ABOUT SEARCH
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.
Share

 Follow: