ISSUES/LOCATIONS

View titles only
(by date)
List all documents, ordered…

By Title

By Author

View PDF, DOC, PPT, and XLS files on line
RSS

Add NWW documents to your site (click here)

Sign up for daily updates

Keep Wind Watch online and independent!

News Watch

Selected Documents

Research Links

Alerts

Press Releases

FAQs

Publications & Products

Photos & Graphics

Videos

Allied Groups

Resource Documents — latest additions

Documents presented here are not the product of nor are they necessarily endorsed by National Wind Watch. These resource documents are provided to assist anyone wishing to research the issue of industrial wind power and the impacts of its development. The information should be evaluated by each reader to come to their own conclusions about the many areas of debate.


Date added:  February 6, 2016
Aesthetics, Economics, Environment, Ireland, Property valuesPrint storyE-mail story

Refusal/Diúltú: North Meath Wind Farm

Author:  An Bord Pleanála

IARRATAS ar chead faoi alt 37E den Acht um Pleanáil agus Forbairt, 2000, leasaithe, de réir na bpleananna agus na sonraí, lena n-áirítear ráiteas tionchair timpeallachta agus ráiteas tionchair Natura, a thaisc North Meath Wind Farm Limited faoi chúram Fehily Timoney and Company Limited as Core House, Bóthar Pholl an Duibh, Corcaigh leis an mBord Pleanála an 6ú lá de Dheireadh Fómhair, 2014. …

Meastar go mbeadh feirm ghaoithe den scála, den mhéad agus den airde atá beartaithe ina gné thiarnasach sa cheantar tuaithe faoi líon daoine seo, go ndéanfadh sé dochar mór do thaitneamhachtaí na réadmhaoine sa chomharsanacht, go gcuirfeadh sé isteach ar charachtar an tírdhreacha agus nach mbeadh sé de réir chuspóirí forbartha iomlána Phlean Forbartha Chontae na Mí 2013-2019. Ina theannta sin, meastar nach mbeadh an fhorbairt bheartaithe ag teacht leis na Treoirlínte um Fhorbairt Fuinneamh Gaoithe de bhrí nár samhlaíodh sa doiciméad treorach seo go dtógfaí tuirbíní gaoithe a bheadh ar scála chomh mór sin i gceantar atá tréithrithe go príomha mar thírdhreach thalamh feirme cnocach agus réidh agus atá chomh cóngarach sin do líon mór áiteanna cónaithe. Mar sin bheadh an fhorbairt bheartaithe contrártha le pleanáil chuí agus forbairt inbhuanaithe an cheantair.

APPLICATION for permission under section 37E of the Planning and Development Act, 2000, as amended, in accordance with plans and particulars, including an environmental impact statement and a Natura impact statement, lodged with An Bord Pleanála on the 6th day of October, 2014 by North Meath Wind Farm Limited care of Fehily Timoney and Company Limited of Core House, Pouladuff Road, Cork. …

It is considered that a wind farm of the scale, extent and height proposed would visually dominate this populated rural area, would seriously injure the amenities of property in the vicinity, would interfere with the character of the landscape and would not be in accordance with the overall development objectives of the Meath County Development Plan 2013-2019. Furthermore, it is considered that the proposed development would not align with the Wind Energy Development Guidelines as this guidance document did not envisage the construction of such extensive large scale turbines in an area primarily characterised as a hilly and flat farmland landscape and in such proximity to high concentrations of dwellings. The proposed development would, therefore, be contrary to the proper planning and sustainable development of the area.

Download original document: “Refusal/Diúltú: North Meath Wind Farm”

Bookmark and Share


Date added:  February 1, 2016
Grid, TechnologyPrint storyE-mail story

Capacity factors and coffee shops: a beginner’s guide to understanding the challenges facing wind farms

Author:  Russell, Geoff

Renewable-only advocates claim that we can build a reliable, clean electricity system using mostly unreliable sources; like wind and solar power. And of course we can; the theory is simple, just build enough of them.

Coffee shops operate rather like our current electricity system; there are a few permanent staff who are analogous to what are called baseload power stations. Additional staff are hired to cover the busy period(s) and correspond typically to gas fired generators.

The renewable alternative is like running a coffee shop with a crew of footloose narcoleptics who arrive if and when they feel like it and who can nod off with little notice. Would this work? Of course; just hire enough of them.

Any criticisms of renewable plans is typically subjected to execution by slogan: That’s soooo last millennium; baseload is a myth!

I’ve used something like this coffee shop analogy elsewhere, but it doesn’t capture other critical features of electricity sources … let’s begin with the capacity factor.

Capacity factor

When someone talks about a “100 megawatt” wind farm, this refers to its maximum power output when the wind is blowing hard. Energy is power multiplied by time, so if it’s windy for 24 hours you’ll get 24 × 100 = 2400 megawatt-hours (MWh) of electrical energy. But actual output over the course of a year is obviously only a percentage of the maximum possible and that percentage is measured and called the capacity factor; typically about 33 percent for wind.

A rooftop solar system is also labelled according to its maximum output and also has a capacity factor… averaging 14 percent in Australia but only 9 or 10 percent in the UK or Germany.

Nuclear plants also have capacity factors because they usually need to be taken off line every year or two for refuelling. Typical percentages are 90 in the US and 96 in South Korea.

You can’t compare electricity sources without understanding capacity factors. Since the capacity factor of a nuclear plant is about 90 percent and that of rooftop solar is about 14 percent and because 90/14 = 6.429, then you’d need to install 9,000 megawatts worth of solar panels to match the amount of electricity you’d get from a 1400 megawatt South Korean APR1400 nuclear reactor over a year (6.429 × 1400 = 9,000).

Which is more than double the 4,041 megawatts installed in Australia between 2007 and the end of 2014.

Matching supply and demand

But 9,000 megawatts of solar panels is still very different to 1,400 megawatts of nuclear, even if both produce the same amount of electricity annually. With 9,000 megawatts of PV panels, you don’t control the output and on any day it will range from nothing at night through to 9,000 megawatts if it’s hot, cloudless and the right time of day.

In contrast, 1,400 megawatts of nuclear power can be adjusted to match demand; turn it down, turn it up.

Below is a picture of the output of some German nuclear plants. Note that the output of one plant, KKI 1 (Isar), is pretty constant. That plant began operation in 1979, which is about the vintage of the seemingly immortal but obviously false anti-nuclear claim that nuclear plants can’t follow load; see Margaret Beavis’s recent NM article for a 2015 misstatement.

Nuclear-load-follow-graph

Brokdorf, on the other hand, is a little newer and has been operating since 1986 and has no trouble ramping up and down. Not only can most nuclear plants load-follow (this is the technical term), it’s increasingly necessary in Germany because of the growth of wind and solar; it’s a thankless task but somebody has to do it!

Now you understand why it’s silly to do what non-technical journalists like Bernard Keane have done, and compare costs per kilowatt of solar with those of nuclear without understanding the capacity factor; let alone grid costs or load-following.

But the capacity factor is also important for another deeper reason and it will take us back to that coffee shop.

First, imagine a small city with a constant electrical demand of 1,000 megawatts and a wind farm supplying, on average, 333 megawatts. Assume the rest is supplied by gas. Given the capacity factor of wind, we can infer that the peak output of that wind farm is about 1,000 megawatts.

What happens to excess electricity?

Now consider what happens if you triple the size of your wind farm.

Since you now have (a maximum of) 3,000 megawatts of wind power, you’ll be averaging 0.33 × 3,000 x 24 megawatt-hours (of energy) per day; which is 100 percent of demand; excellent.

But what happens when it’s really windy? The output is then triple the demand; so, without storage, that electricity gets dumped.

Dumping electricity on your neighbours isn’t a nice thing to do if they don’t need it at the time.

Wind farms, like any low capacity factor unreliable electricity source, are fine when they are a small contributor to a large grid, but not so fine when their surges are large relative to the demand on the grid; then they become a veritable bull in a china shop.

How does this look in coffee shop terms? If you run your coffee shop with a large bunch of narcoleptic staff, then some of the time they’ll all be awake and rearing to go, but there’ll be few customers and your staff will be twiddling their thumbs at best and getting in each others way at worst.

But perhaps the analogy is broken? Instead of a single wind farm, we could have multiple farms spread over a huge area and interconnected so that the wind must surely even out; never blowing hard (nor totally calm) at all sites. Certainly this sounds plausible … but what actually happens?

John Morgan looked at the Australian data on wind power in an article a couple of months ago on bravenewclimate.com.

In the 12 months to September 2015, Australia had 3,753 megawatts of wind power across the National Electricity Market (which excludes WA which isn’t connected) and the daily average output ranged from 2.7 percent (101 megawatts for 24 hours) to 86 percent (3,227 megawatts for 24 hours).

This isn’t so different from what would happen with a single 3,753 megawatt wind farm. So despite expectations, there were times when it was pretty windy almost everywhere and other times, including runs of multiple days, when it was pretty damn still almost everywhere.

The overall capacity factor was measured at 29 percent. So despite expectations, many wind farms, even in a big country like Australia, aren’t that much different to one very big one. And you really do have to worry about being becalmed.

I argued in my last New Matilda article that wasting battery capacity papering over the deficiencies of wind and solar will reduce our ability to solve our clean transportation problems.

Copper plates and real networks

Clearly if many wind farms are intended to even out supply, then they need to be interconnected.

A study commonly cited in Australia supporting the feasibility of a 100 percent renewable system is that of Elliston, Diesendorf and MacGill.

One assumption of that study was that electricity can flow freely from wherever it is generated to wherever it is needed.

This is called the “copper plate” assumption; it assumes the continent is just one massive copper plate conducting electricity everywhere at high speed.

But real interconnectors have to be built, and how much connectivity do low capacity factor sources need? A European study found that the grid capacity to transfer electricity under a 100 percent renewable scenario needs to be ramped up by between 5.7 and 11.5 times; depending on the quality of service required.

The “flow freely” assumption occupied just one sentence of the Australian study but conceals a wealth of problems and complexity. The EU goal is that member countries provide interconnection capacity equal to just 10 percent of installed capacity … by 2020.

The need for extra national interconnections is mirrored internally within the larger countries by the need for extra internal interconnections. In Germany this is being implemented under the Power Grid Expansion Act (EnLAG) involving 3,800 kilometers of new extra-high voltage lines.

These lines aren’t being built without protest. The path of least resistance will be wildlife habitat; to avoid concerns both real and imagined over reducing property prices and health risks.

To extend the coffee shop analogy to cover distributed wind farms, we move from a single shop to a WindyBucks Chain of shops spread over the country.

The European study implies that making this work will require not just extra staff but a fleet of lightening fast taxis to shunt the staff around from shop to shop. This is so that when we have too many baristas in Cairns, we can shunt them down to cover for those having a kip in Hobart.

Again, the theory is simple; just add another layer of duct tape until it holds together.

Markets, profits and planning

There’s one not so obvious way in which the coffee shop analogy breaks down. Coffee shop staff get paid by the hour, not by the number of coffees they make; but users of electricity pay for what they use, not for what is generated.

Does anybody want to pay 10 times the going rate for a coffee just because there happen to be 10 grinning baristas twiddling their thumbs behind the Espresso machine?

If not, then consider what happens to electricity prices during our imagined tripling of wind capacity. Remember, we started by assuming wind provided about 30 percent of electrical energy, so when we triple the number of farms and the wind is blowing pretty strongly everywhere, they’ll be generating about triple what we want.

In a free electricity market where suppliers bid for electricity, the price will dive. So while it’s very profitable to build a wind farm when total wind energy is less than the capacity factor, it soon becomes very unprofitable because nobody wants your product; you also create a mess that somebody has to clean up by building extra grid magic to handle power surges.

Why didn’t people see this coming a decade ago? Probably somebody did, but they were “Sooo last millennium”!

This market failure gets worse and worse as wind penetration exceeds the capacity factor. Our whole climate mess can be viewed as one massive market failure; which is part of why I’m not a fan of using markets to solve problems of consequence.

People who build solar farms, hospitals, nuclear plants, bridges, aeroplanes, submarines, battery factories and any other bloody thing are unanimous in their use of planning; in contrast, people who love markets are people like politicians, lawyers and market traders who rarely build anything that doesn’t come in an Ikea box.

This article has tried to explain as non-technically as possible some of the problems that arise as penetration rates of intermittent electricity sources rise. I’ve used wind as a concrete example, but the same problems occur with any low capacity factor sources.

It may help people understand why Germany is burning half of her forestry output for electricity to provide some level of baseload power amid the renewable chaos. She could be, and should be, maximally expanding forests to draw down carbon, but instead, her logging and fuel crop industries are booming.

But the German use of baseload biomass to paper over renewable deficiencies isn’t just a love of lumberjacks and hatred for wildlife – when AEMO (Australian Electricity Market Operator) reported in 2013 on the feasibility of 100 percent renewable electricity, both her scenarios were “Sooo Last Millenium” and postulated a baseload system underneath the wind and solar components; either biomass (Log, Slash, Truck and Burn) like the Germans, or geothermal (ironically driven by heat from radioactive decay within the earth).

January 13, 2016
newmatilda.com

Bookmark and Share


Date added:  January 19, 2016
WildlifePrint storyE-mail story

Multiple mortality events in bats: a global review

Author:  O'Shea, Thomas; Cryan, Paul; Hayman, David; Plowright, Raina; and Streicker, Daniel

Thomas J. O’Shea, Paul M. Cryan, David T. S. Hayman, Raina K. Plowright, and Daniel G. Streicker

Article first published online: 18 JAN 2016. DOI: 10.1111/mam.12064

Download original document: “Multiple mortality events in bats: a global review”

Bookmark and Share


Date added:  January 13, 2016
Economics, OntarioPrint storyE-mail story

Analysis of the Economic Impacts of the wpd Fairview Wind Project on the Collingwood Regional Airport and the Regional Economy

Author:  Malone Given Parsons; Cormier, Charles; Metro Economics; and Aerocan Aviation

In short, we conclude that the Collingwood Regional Airport is fulfilling its intended function as an economic engine and is attracting business expansion proposals that would deliver very substantial economic benefit to the South Georgian Bay region. Approval of the current wpd Turbine Project would be fatal to business expansion, such that, on balance, the offending turbines should be moved or wpd’s Renewable Energy Act Application denied.

January 8, 2016

Prepared By:  MALONE GIVEN PARSONS LTD.

In Association With:
Charles Cormier, Aeronautical Information Consultant
metro economics
Aerocan Aviation Ltd.

Prepared For:
The Township of Clearview
The Town of Collingwood

Download original document: “Analysis of the Economic Impacts of the wpd Fairview Wind Project on the Collingwood Regional Airport and the Regional Economy”

Bookmark and Share


Earlier Documents »

Get the Facts Follow Wind Watch on Twitter

Wind Watch on Facebook

Share

HOME ABOUT PRIVACY CONTACT DONATE
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.
Formerly at windwatch.org.

Follow Wind Watch on Twitter

Wind Watch on Facebook

Share