FAQs

Noise & Health

Good for Farmers?

WHAT TO DO
when your community is targeted

FAQs

Publications & Products
(Fact sheets, flyers, buttons, and more)

Photos & Graphics

Videos

Research Links

Selected Documents

Press Releases

Alerts & Events

Store

Sign up for daily updates
RSS

RSS Feeds and more

Keep Wind Watch online and independent!

add NWW to your search bar ]

National Wind Watch: Wind Energy Documents

[ RSS Preview ]
[ https://www.wind-watch.org/documents/feed-full.php ]

Curtailment and acoustic deterrents reduce bat mortality at wind farms
Good, Rhett; et al.
5 June 2022
Illinois, Wildlife, Bats, Wind power, Wind energy

Abstract – The impacts of wind energy on bat populations is a growing concern because wind turbine blades can strike and kill bats, and wind turbine development is increasing. We tested the effectiveness of 2 management actions at 2 wind-energy facilities for reducing bat fatalities: curtailing turbine operation when wind speeds were Lasionycteris noctivagans) mortality. Overall bat fatality rates were 66.9% lower at curtailed turbines with acoustic deterrents compared to turbines that operated at manufacturer cut-in speed. Curtailment and the deterrent reduced bat mortality to varying degrees between species, ranging from 58.1% for eastern red bats (Lasiurus borealis) to 94.4 for big brown bats (Eptesicus fuscus). Hoary (Lasiurus cinereus) and silver-haired bat mortality was reduced by 71.4% and 71.6%, respectively. Our study lacked a deterrent-only treatment group because of the expense of acoustic deterrents. We estimated the additional reduction in mortality with concurrent deployment of the acoustic deterrent and curtailment under the assumption that curtailment and the acoustic deterrent would have reduced mortality by the same percentage at adjacent wind-energy facilities. Acoustic deterrents resulted in 31.6%, 17.4%, and 66.7% additional reductions of bat mortality compared to curtailment alone for eastern red bat, hoary bat, and silver-haired bat, respectively. The effectiveness of acoustic deterrents for reducing bat mortality at turbines with rotor-swept area diameters >110 m is unknown because high frequency sound attenuates quickly, which reduces coverage of rotor-swept areas. Management actions should consider species differences in the ability of curtailment and deterrents to reduce bat mortality and increase energy production.

Rhett E. Good, Goniela Iskali, John Lombardi, Trent McDonald, Karl Dubridge, Andrew Tredennick, Western EcoSystems Technology
Michael Azeka, EDF Renewables

The Journal of Wildlife Management, 08 May 2022, doi:10.1002/jwmg.22244

Wind turbines without curtailment produce large numbers of bat fatalities throughout their lifetime: A call against ignorance and neglect
Voight, Christian, et al.
5 June 2022
Europe, Germany, Law, Wildlife, Bats, Wind power, Wind energy

Abstract – Bats are protected by national and international legislation in European countries, yet many species, particularly migratory aerial insectivores, collide with wind turbines which counteracts conservation efforts. Within the European Union it is legally required to curtail the operation of wind turbines at periods of high bat activity, yet this is not practiced at old wind turbines. Based on data from the national carcass repository in Germany and from our own carcass searches at a wind park with three turbines west of Berlin, we evaluated the magnitude of bat casualties at old, potentially poor-sited wind turbines operating without curtailment. We report 88 documented bat carcasses collected by various searchers over the 20-year operation period of this wind park from 2001 to 2021. Common noctule bats (Nyctalus noctula) and common pipistrelles (Pipistrellus pipistrellus) were most often found dead at these turbines. Our search campaign in August and September 2021 yielded a total of 18 carcasses. We estimated that at least 209 bats were likely killed during our field survey, yielding more than 70 casualties/wind turbine or 39 casualties/MW in two months. Since our campaign covered only part of the migration season, we consider this value as an underestimate. The 20-year period of the wind park emphasises the substantial impact old turbines may have on bat individuals and populations when operating without curtailments. We call for reconsidering the operation procedures of old wind turbines to stop the continuous loss of bats in Germany and other countries where turbine curtailments are even less practiced than in Germany.

Christian C. Voigt, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
Klara Kaiser, Samantha Look, Freie Universitäat Berlin, Germany
Kristin Scharnweber, Carolin Scholz, Universität Potsdam, Germany

Global Ecology and Conservation, Volume 37, September 2022, e02149
doi:j.gecco.2022.e02149

Download original document: “Wind turbines without curtailment produce large numbers of bat fatalities throughout their lifetime: A call against ignorance and neglect

Impact assessments of wind farms on seabird populations that overlook existing drivers of demographic change should be treated with caution
13 May 2022
U.K., Wildlife, Wind power, Wind energy

Abstract – Population viability analyses (PVA) are now routinely used during the consenting process for offshore wind energy developments to assess potential impacts to vulnerable species, such as seabirds. These models are typically based on mean vital rates, such as survival and fecundity, with some level of environmental stochasticity (i.e., temporal variation). However, many species of seabird are experiencing population decline due to temporal (i.e., directional) trends in their vital rates. We assess the prevalence of temporal trends in rates of fecundity for a sentinel species of seabird, the black-legged kittiwake Rissa tridactyla, and examine how accounting for these relationships affects the predictive accuracy of PVA, as well as the projected population response to an extrinsic threat. We found that temporal trends in kittiwake rates of fecundity are widespread, and that including these trends in PVA assessments dramatically influences the projected rate of population decline. We advocate that model validation become a prerequisite step in seabird PVA assessments to identify potential biases influencing the projected population response. We also argue that environmental factors driving current population dynamics need to be incorporated in PVA impact assessments as potential “worst-case” scenarios. These findings have immediate application for improving and reducing uncertainty in impact assessments conducted as part of the consenting process for offshore wind energy developments.

a) Temporal (i.e., directional) trends in rates of fecundity are widespread amongst populations of kittiwakes in the UK and Ireland. Colonies with significant temporal trends in fecundity shown as red circles, those with stable fecundity shown as blue triangles. Skomer (South Wales) shown as an open red circle. (b) Fecundity of kittiwakes on Skomer Island declined at a constant rate between 1989 and 2020. Dashed line shows a linear regression fitted through the data. (c) We found high variation in the strength of temporal trends estimated using colony-specific Poisson GLMs. Slope coefficient values shown with standard error. Colonies with directional fecundity shown as red circles, those with stable fecundity shown as blue triangles. Skomer shown as open red circle. Gray dashed line at zero for reference.

Catharine Horswill, ZSL Institute of Zoology, London, Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, and Department of Zoology, University of Cambridge, UK
Julie A.O. Miller, Marine Scotland Science, Marine Laboratory, Aberdeen, UK
Matt J. Wood, School of Natural and Social Sciences, University of Gloucestershire, Cheltenham, UK

Conservation Science and Practice. 13 March 2022. doi: 10.1111/csp2.12644

Download original document: “Impact assessments of wind farms on seabird populations that overlook existing drivers of demographic change should be treated with caution

Effects of Anthropogenic Electromagnetic Fields (EMF) on the Early Development of Two Commercially Important Crustaceans, European Lobster, Homarus gammarus (L.) and Edible Crab, Cancer pagurus (L.)
Harsanyi, Petra; Scott, Kevin; et al.
30 April 2022
Wildlife, Wind power, Wind energy

Abstract – Proposed offshore windfarm sites could overlap with the brooding and spawning habitats of commercially important crustacea, including European lobster, Homarus gammarus and Edible crab, Cancer pagurus. Concerns have been raised on the biological effects of Electromagnetic Fields (EMFs) emitted from subsea power cables on the early life history of these species. In this study, ovigerous female H. gammarus and C. pagurus were exposed to static (Direct Current, DC) EMFs (2.8 mT) throughout embryonic development. Embryonic and larval parameters, deformities, and vertical swimming speed of freshly hatched stage I lobster and zoea I crab larvae were assessed. EMF did not alter embryonic development time, larval release time, or vertical swimming speed for either species. Chronic exposure to 2.8 mT EMF throughout embryonic development resulted in significant differences in stage-specific egg volume and resulted in stage I lobster and zoea I crab larvae exhibiting decreased carapace height, total length, and maximum eye diameter. An increased occurrence of larval deformities was observed in addition to reduced swimming test success rate amongst lobster larvae. These traits may ultimately affect larval mortality, recruitment and dispersal. This study increases our understanding on the effects of anthropogenic, static EMFs on crustacean developmental biology and suggests that EMF emissions from subsea power cables could have a measurable impact on the early life history and consequently the population dynamics of H. gammarus and C. pagurus.

Petra Harsanyi, Kevin Scott, Blair A. A. Easton, Guadalupe de la Cruz Ortiz, Erica C. N. Chapman, Althea J. R. Piper, Corentine M. V. Rochas, and Alastair R. Lyndon
St Abbs Marine Station, The Harbour, St Abbs, Scottish Borders, Eyemouth, UK

Journal of Marine Science and Engineering 2022, 10(5), 564; doi:10.3390/jmse10050564

Download original document: “The Effects of Anthropogenic Electromagnetic Fields (EMF) on the Early Development of Two Commercially Important Crustaceans, European Lobster, Homarus gammarus (L.) and Edible Crab, Cancer pagurus (L.)

Root Causes and Mechanisms of Failure of Wind Turbine Blades: Overview
Mishnaevsky, Leon
28 April 2022
Technology, Wind power, Wind energy

Abstract – A review of the root causes and mechanisms of damage and failure to wind turbine blades is presented in this paper. In particular, the mechanisms of leading edge erosion, adhesive joint degradation, trailing edge failure, buckling and blade collapse phenomena are considered. Methods of investigation of different damage mechanisms are reviewed, including full scale testing, post-mortem analysis, incident reports, computational simulations and sub-component testing. The most endangered regions of blades include the protruding parts (tip, leading edges), tapered and transitional areas and bond lines/adhesives. Computational models of different blade damage mechanisms are discussed. The role of manufacturing defects (voids, debonding, waviness, other deviations) for the failure mechanisms of wind turbine blades is highlighted. It is concluded that the strength and durability of wind turbine blades is controlled to a large degree by the strength of adhesive joints, interfaces and thin layers (interlaminar layers, adhesives) in the blade. Possible solutions to mitigate various blade damage mechanisms are discussed.

Schema of locations of often-observed damage mechanisms of a wind turbine blade.

Results of the survey of blade service companies: Frequency of wind turbine blade failure mechanisms depending on the age of wind turbines. Reprinted from Boopathi et al with kind permission from John Wiley and Sons.

Leon Mishnaevsky, Jr.
Department of Wind Energy, Risø Campus, Technical University of Denmark, Roskilde, Denmark

Materials 2022, 15(9), 2959; doi:10.3390/ma15092959

Download original document: “Root Causes and Mechanisms of Failure of Wind Turbine Blades: Overview

Get the Facts Follow Wind Watch on Twitter

Wind Watch on Facebook

Share

CONTACT DONATE PRIVACY ABOUT SEARCH
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.
Share

 Follow: