[ exact phrase in "" ]

[ including uploaded files ]

ISSUES/LOCATIONS

List all documents, ordered…

By Title

By Author

View PDF, DOC, PPT, and XLS files on line
Get weekly updates

WHAT TO DO
when your community is targeted

RSS

RSS feeds and more

Keep Wind Watch online and independent!

Donate via Paypal

Donate via Stripe

RSS

Add NWW documents to your site (click here)

Problems measuring low frequency sound levels near wind farms 

Author:  | Noise

ABSTRACT: It is current practice to measure sound pressure levels (SPL) from wind farms at a handful of locations in the surrounding countryside. These can be placed near sensitive areas such as residences to provide an indication of the SPL at that point and are used in conjunction with sound level prediction software to infer sound level throughout the affected areas. This paper reports a literature review of human perception of low-frequency sound before describing investigations into sound levels at the Makara wind farm near Wellington, New Zealand where the interference of low frequency sound from the multiple wind turbines form stable SPL patterns. The low frequency emissions from multiple wind turbines were simulated and validated against measurements from microphone arrays. Ten sound frequencies from 1/3 octave immission spectra were chosen from recorded measurements on the site ranging from 55 Hz to 315 Hz. The simulation used the positions of 14 wind turbines closest to a microphone array as point sources of the sounds. Results show that the combined frequencies from a single turbine produced SPL patterns within a 100 m-by-100 m area that varied by 2–5 dB whereas the combined sounds from all 14 turbines varied by 6-13 dB. Validation of these results was achieved by using three 2-by-4 microphone arrays with 1 m, 2 m and 3 m separation between the microphones. These recorded variations of 6–11 dB in their 15-minute, SPL averages. Additional validation was also shown by direct observation; the sound from the wind turbines was observed to appear and disappear within two to three paces between fixed locations. The conclusion is that measurements of low frequency sound levels can vary considerably over even very short distances and that point measurements may not represent the sound levels throughout their immediate neighbourhood.

H.H.C. Bakker
School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand

B.I. Rapley
Atkinson and Rapley Consulting, Palmerston North, New Zealand

Presented at the annual convention of the Australian Acoustics Society, 2nd-4th November 2011, Queensland, Australia

Download original document: “Problems measuring low frequency sound levels near wind farms

This material is the work of the author(s) indicated. Any opinions expressed in it are not necessarily those of National Wind Watch.

The copyright of this material resides with the author(s). As part of its noncommercial educational effort to present the environmental, social, scientific, and economic issues of large-scale wind power development to a global audience seeking such information, National Wind Watch endeavors to observe “fair use” as provided for in section 107 of U.S. Copyright Law and similar “fair dealing” provisions of the copyright laws of other nations. Queries e-mail.

Wind Watch relies entirely
on User Funding
   Donate via Paypal
(via Paypal)
Donate via Stripe
(via Stripe)

Share:

e-mail X FB LI TG TG Share

Get the Facts
CONTACT DONATE PRIVACY ABOUT SEARCH
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.

 Follow:

Wind Watch on X Wind Watch on Facebook

Wind Watch on Linked In Wind Watch on Mastodon