Documents Home
View PDF, DOC, PPT, and XLS files on line

Add NWW documents to your site (click here)

Sign up for daily updates

Keep Wind Watch online and independent!

News Watch

Selected Documents

Research Links


Press Releases


Publications & Products

Photos & Graphics


Allied Groups

Emissions savings from wind power  

Author:  | Emissions, Ireland

Recently, economist Colm McCarthy noted that:

Wind generators can be relied on to produce power only about one hour in three over a year, and those productive hours are unpredictable. So conventional capacity has to be kept in reserve for the periods when the wind does not blow. These stations will be utilised less than optimally and this is a hidden cost of wind generation.

In addition to inefficient use of capital, critics have argued that wind generation has a potential cost in terms of CO₂ emissions. When the wind is blowing, priority is given to wind generation over conventional capacity. However an idling thermal plant is like a car crawling along in traffic – not doing very much but still burning fuel. This may cause thermal plant to burn more fuel per unit energy generated than would otherwise be the case.

Is there any direct evidence of reduced CO₂ savings when wind generation is high? Surprisingly, the answer to this question is yes.

The scatterplot below shows the relationship between total instantaneous CO₂ emissions and instantaneous wind generation using data from the Irish grid operator Eirgrid. The data cover the period from 1-Nov-2010 to 30-Aug-2011 at 15 minute intervals (~29,000 data points). The blue line is a local regression (loess) fit. The loess fit has span parameter 1.0. A non-parametric regression curve is shown in grey.

As expected, wind generation does reduce CO₂ emissions. A linear regression fit suggests an emissions saving ~−0.38tCO₂/MWh. However, the real world relationship between wind generation and emissions is clearly non-linear. At wind generation ~600MW, fuel savings begin to slow. Above ~800MW, they cease altogether. Above 1000MW, emissions increase again.

Heat rate curve

Carbon intensity is CO₂ emitted per unit energy generated. To see why emissions savings decrease as wind generation increases, we need to look at the carbon intensity of thermal generation. Thermal generation is extracted from the Eirgrid data as the difference between demand (MW) and wind generation (MW) (assumes no power is dumped). The graph below shows the carbon intensity of thermal generation (tCO₂/MWh) versus thermal generation (MW) for the period Nov 2010 to Aug 2011.

There is an optimum point on the curve around 3000MW. 3000MW is close to the average electricity demand. In the absence of wind generation, thermal generation fluctuates in line with demand around the the optimum point, a design feature which ensures maximum efficiency. Unfortunately, high wind generation forces thermal plant to operate far to the left of the optimal point on the “heat rate curve”.

Another plot …

Wind penetration is defined as instantaneous wind generation as a % of instantaneous demand.

This graph of thermal carbon intensity (tCO₂/MWh) vs wind penetration (%) tells the same story.

This material is the work of the author(s) indicated. Any opinions expressed in it are not necessarily those of National Wind Watch.

The copyright of this material resides with the author(s). As part of its noncommercial effort to present the environmental, social, scientific, and economic issues of large-scale wind power development to a global audience seeking such information, National Wind Watch endeavors to observe “fair use” as provided for in section 107 of U.S. Copyright Law and similar “fair dealing” provisions of the copyright laws of other nations. Queries e-mail.

Wind Watch relies entirely
on User Funding
Donate $5 PayPal Donate


Get the Facts Follow Wind Watch on Twitter

Wind Watch on Facebook


© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.