[ exact phrase in "" • results by date ]

[ Google-powered • results by relevance ]


Subscribe to RSS feed

Add NWW headlines to your site (click here)

Sign up for daily updates

Keep Wind Watch online and independent!

Donate $10

Donate $5

Selected Documents

All Documents

Research Links


Press Releases


Publications & Products

Photos & Graphics


Allied Groups

News Watch Home

Wind turbines killing more than just local birds, study finds  

Credit:  Purdue University | September 28, 2016 | www.purdue.edu ~~

WEST LAFAYETTE, Ind. – Wind turbines are known to kill large birds, such as golden eagles, that live nearby. Now there is evidence that birds from up to hundreds of miles away make up a significant portion of the raptors that are killed at these wind energy fields.

Using DNA from tissue and stable isotopes from the feathers of golden eagle carcasses, researchers from Purdue University and the U.S. Geological Survey found that golden eagles killed at the Altamont Pass Wind Resource Area in northern California can come from hundreds of miles away. Golden eagles are a species of conservation concern, so understanding population-level differences and how individuals interact with turbines is key to meeting a U.S. Fish and Wildlife Service target of no net loss to their populations.

The APWRA is one of the oldest wind farms in the country and one of the largest in the world originally with around 5,000 turbines. Worldwide, such facilities have been responsible for the deaths of 140,000 to 328,000 birds and 500,000 to 1.6 million bats, raising questions about their effects on population sustainability.

“Eagles tend to use that habitat around the turbines. It’s windy there, so they can save energy and soar, and their preferred prey, California ground squirrels, is abundant there,” said J. Andrew DeWoody, a Purdue professor of genetics in the Department of Forestry and Natural Resources. “As they soar, these eagles are often looking straight down, and they fail to see the rapidly moving turbine blades. They get hit by the blades, and carcasses are found on the ground under the turbines.”

Collaborator David Nelson, a stable isotope ecologist with the University of Maryland Center for Environmental Science, tested the birds’ feathers for stable hydrogen isotopes, which can be used to determine where the birds likely grew their feathers. The research team determined that about 75 percent of the 62 birds were from the local population. The remaining 25 percent likely migrated into the area before they were killed.

Isotopes are atoms of an element that have different molecular weights. As precipitation moves inland, water with the heavier form of hydrogen falls out first, which creates predictable patterns of the stable isotopes ratios of precipitation across continents.

“When a bird drinks water or eats animals in a particular place, the hydrogen isotope ratios of precipitation in that area get recorded in its tissues,” Nelson said. “You can use these hydrogen ratios in the feathers to determine the approximate place that the bird grew its feathers.”

A genetic analysis revealed that golden eagles from the western U.S. have gene pools similar to those killed at the APWRA, which reflects the capacity of these birds to disperse widely.

“The population models we built confirm that the age structure of the eagles killed at Altamont is difficult to replicate without substantial immigration,” said co-author Todd Katzner, a wildlife biologist with the USGS. Katzner said these findings suggest that environmental assessments of alternative energy facilities like Altamont Pass should take into consideration that animal populations affected by wind turbines might not be just local.

“If you only consider local birds in an environmental assessment, you’re not really evaluating the effect that facility may have on the entire population,” Katzner said.

DeWoody said that wind energy generators can receive permits that allow a certain number of unintended bird deaths. But if that number is too large, the companies could be fined. And knowing that a large percentage of the birds killed are from neighboring states could muddy the management waters.

“The golden eagle fatalities at this one site have demonstrated consequences that extend across much of the range of the species across North America,” DeWoody said.

The golden eagle population is a concern for several state and federal agencies, DeWoody added. He said future research could include looking at more bird species affected by turbines.

The study was published in Conservation Biology on Wednesday (Sept. 28) and is available at http://dx.doi.org/10.1111/cobi.12836.

The U.S. Bureau of Land Management, the U.S. Fish and Wildlife Service, and the California Department of Fish and Wildlife funded this study.

Writer: Brian Wallheimer, 765-532-0233, brian.wallheimer@gmail.com

Sources: Andrew DeWoody, 765-496-6109, dewoody@purdue.edu

David Nelson, 301-689-7171, dnelson@umces.edu

Todd Katzner, 208-426-5232, tkatzner@usgs.gov


Golden eagle fatalities and the continental-scale consequences of local wind-energy generation 

 Todd E. Katzner a,*, David M. Nelson b, Melissa A. Braham c, Jacqueline M. Doyle d, Nadia B. Fernandez d, Adam E. Duerr c , Peter H. Bloom e, Matthew C. Fitzpatrick b, Tricia A. Miller c, Renee C. E. Culver f, Loan Braswell f ,

a U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk St., Boise, ID

b University of Maryland Center for Environmental Science, Appalachian Laboratory, 301 Braddock Road, Frostburg, MD

c Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV

d Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN

e Western Foundation of Vertebrate Zoology, Camarillo, CA

f NextEra Energy Resources, 700 Universe Blvd., Juno Beach, FL

g Department of Biological Sciences, Purdue University, West Lafayette, IN 

Renewable energy production is expanding rapidly despite mostly unknown environmental effects on wildlife and habitats. We used genetic and stable isotope data collected from golden eagles (Aquila chrysaetos) killed at the Altamont Pass Wind Resource Area (APWRA) in California with demographic models to test hypotheses about the geographic extent and demographic consequences of fatalities caused by renewable energy facilities. Geospatial analyses of δ2H values obtained from feathers showed that ≥25% of these APWRA-killed eagles were recent immigrants to the population, most from long distances away (>100 km). Data from nuclear genes indicated this subset of immigrant eagles was genetically similar to birds identified as locals from the δ2H data. Demographic models implied that in the face of this mortality, the apparent stability of the local golden eagle population would be maintained by continental-scale immigration. These analyses demonstrate that ecosystem management decisions concerning the effects of local-scale renewable energy can have continental-scale consequences. 

Agricultural Communications: (765) 494-8415;
Darrin Pack, dpack@purdue.edu 
Agriculture News Page

Source:  Purdue University | September 28, 2016 | www.purdue.edu

This article is the work of the source indicated. Any opinions expressed in it are not necessarily those of National Wind Watch.

The copyright of this article resides with the author or publisher indicated. As part of its noncommercial effort to present the environmental, social, scientific, and economic issues of large-scale wind power development to a global audience seeking such information, National Wind Watch endeavors to observe “fair use” as provided for in section 107 of U.S. Copyright Law and similar “fair dealing” provisions of the copyright laws of other nations. Send requests to excerpt, general inquiries, and comments via e-mail.

Wind Watch relies entirely
on User Funding
Donate $5 PayPal Donate


Tag: Wildlife

News Watch Home

Get the Facts Follow Wind Watch on Twitter

Wind Watch on Facebook


© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.



Wind Watch on Facebook

Follow Wind Watch on Twitter

National Wind Watch