ISSUES/LOCATIONS

Documents Home
View PDF, DOC, PPT, and XLS files on line
RSS

Add NWW documents to your site (click here)

Sign up for daily updates

Keep Wind Watch online and independent!

Donate $10

Donate $5

News Watch

Selected Documents

Research Links

Alerts

Press Releases

FAQs

Publications & Products

Photos & Graphics

Videos

Allied Groups

Pre-filed testimony of David R. Lawrence, MD  

Author:  | Connecticut, Health, Noise, Regulations

What is the basis of your testimony to the Siting Council?

I have concerns about the siting of wind turbines in residential areas due to documented health risks if adequate setbacks are not established. …

What is the basis for your concerns about setback distances?

There is safety in distance. Wind turbines emit sound energy that includes audible sound as well as infrasound. Infrasound has been documented to have acute medical effects in high doses over short periods. At lower doses over a prolonged period of time, there are also established negative health effects. The way to protect the exposed population is to ensure that there is a safe distance from the wind turbines. The current Connecticut sound ordinance standards would allow infrasound exposure to exceed safe levels. Given the unique qualities of wind turbines, new standards must be established and enforced regarding protection from infrasound and other harmful noises. Standards set by wind turbine manufacturers do not adhere to science and do not afford adequate protection to neighboring residents.

What evidence do you have about the harmful effects of infrasound from acute exposure?

The Health Protection Agency of the United Kingdom compiled research regarding ultrasound and infrasound to establish safe limits on exposure in a paper, “Health Effects of Exposure to Ultrasound and Infrasound: Report of the Independent Advisory Group on Non-ionizing Radiation” (February 2010). While the authors acknowledge that there is not a lot of research to review regarding infrasound, a number of available studies demonstrated that high energy exposure – usually about 100 dBA – over short periods in a repeated fashion can have physiologic and psychologic effects on animals and on humans. That is to say, the energy from infrasound can have a negative impact on living beings. …

Since wind turbines are already set back to limit sound energy maximum to 55 dBA daytime, 45 dBA nighttime, what are your concerns about exposure to infrasound from them?

Levels of 55/45 dBA are clearly too high. Connecticut environmental sound regulations were developed in the 1970s. They can not possibly account for the unique issues of infrasound generated by wind turbines. A significant number of scientific investigators from around the globe have demonstrated that sound levels exceeding 30-35 dBA have negative health effects. In a series of studies by Pedersen and others in The Netherlands it has been shown that there is a significant increase in annoyance above 30-35 dBA.

The World Health Organization in its position papers “Guidelines for Community Noise” (1999) and “Night Noise Guidelines for Europe” (2009) notes that noise has detrimental effects on health above 30dBA, especially for “vulnerable populations”, that is, children and the elderly. These negative health effects include sleep disturbance with associated issues of daytime fatigue, reduced performance and accidents, as well as cardiovascular disease, depression and mental illness. The WHO furthermore states that “It should be stressed that a plausible biological model is available with sufficient evidence for the elements of the causal chain”.

Geoff Leventhall, a highly respected acoustics expert in the UK, has numerous publications regarding infrasound. In his paper “Low-Frequency Noise and Annoyance” (Noise and Health, 2004, 6; 23: 59-72) he notes that infrasound and low-frequency noise (10-200 Hz) “ha[ve] been recognized as a special environmental noise problem”, “that the A-weighted level underestimates the effects of low-frequency noise”, and that “there is a possibility of learned aversion to low-frequency noise, leading to annoyance and stress which may receive unsympathetic treatment from regulatory authorities” [emphasis added]. In a report on the effects of infrasound and low-frequency noise for the UK Department of Environment, Food and Rural Affairs, “A Review of Published Research on Low-Frequency Noise and Its Effects” (May 2003), Leventhall reviews the science behind his concerns. Quoting Leventhall (section 13.60):

There is no doubt that some humans exposed to infrasound experience abnormal ear, CNS [central nervous system], and resonance-induced symptoms that are real and stressful. If this is not recognized by investigators or their treating physicians, and properly addressed with understanding and sympathy, a psychological reaction will follow and the patient’s problems will be compounded. Most subjects may be reassured that there will be no serious consequences to their health from infrasound exposure and if further exposure is avoided they may expect to become symptom free. [emphasis added]

Are you familiar with a position paper authored by leading experts that dismiss concerns about infrasound?

The paper in question is “Wind Turbine Sound and Health Effects: An Expert Panel Review” (December 2009). It was sponsored by American and Canadian Wind developers and should stand as an embarrassment to them. The positions taken by the experts have omissions, misstatements, and unsupported conclusions. They offered little science to back their claims, and at times contradicted the science they presented. A fairly comprehensive critique with exposure of many of the misstatements was published as “An Analysis of the American/Canadian Wind Energy Association Sponsored ‘WTSHE/EPR’” (January 2010). I will add that when I read the report I felt that there were even more errors that those critics pointed out. All in all the “WTSHE/EPR” paper was poorly done and can not be considered seriously in siting guidelines. As a troubling aside, Geoff Leventhall, quoted by me in question 5, was one of the co-authors. By co-authoring the paper, he stands in contradiction to his own work, even if it is tacit approval of the statements. I say this to point out that apparently even a highly respected researcher can bend the rules of integrity with the right incentives.

Do you have any comments about studies raised by researchers such as [doctors] Nina Pierpont and Amanda Harry?

I think that time will validate much if not all of the findings that these researchers claim. They [the findings] are dismissed by the wind farm developers because they are not blinded studies and are based on reporting as opposed to concrete facts. However, given scientific studies in the lab and with study groups that show harm at acute, high-level exposure, and studies that demonstrate annoyance and related health issues above 30-35 dBA, it is reasonable to think that wind-related health issues as determined in these studies are real. The practice of medicine approaches evaluation and care of patients scientifically. Data are gathered, patients are assessed, and conclusions are based on probabilities. If someone is evaluated for a fever, even though there is a tremendously long list of possible causes, one can usually determine its cause through evaluation and taking into consideration likelihoods. In that way I believe that the researchers noted have sound reason to draw the conclusions they have. …

In your opinion as a medical doctor, would you agree that annoyance can cause negative health effects?

Annoyance even vaguely defined would include emotional responses that could easily affect physical and psychologic well-being. As stated by the WHO and others, annoyance is associated with sleep disorders, cognitive impairment, headaches, agitation, and depression among other issues. Annoyance is seen to be a factor that causes stress. In the practice of medicine we recognize stress a s a risk factor for heart disease, high blood pressure, migraine and tension headaches, fibromyalgia, and anxiety and depressive disorders, to name some of the prominent problems. Therefore there is a natural connection with annoyance and physical and psychologic disorders. In my clinical practice I have seen significant physical and health problems that have at least in part been caused and or made worse by stress. …

How do you propose the Siting Council establish safe standards?

The Siting council would do well to collate the abundance of data that is available from researchers and from experiences with existing wind farms. Siting guidelines should conform to WHO standards of limiting exposure to 30-35 dBA. Distance from the source, i.e., the wind turbines, is the only reasonable way to limit exposure. Kamperman and James (“Simple Guidelines for Siting Wind Turbines to Prevent Health Risks”; Noise-Con 2008, 2008 July 28-31) review various sound considerations and propose guidelines that would set back wind turbines a minimum of 1000 meters. Petersen and Waye (“Wind Turbine Noise, Annoyance and Self-Reported Health and Well-Being in Different Living Environments”, Occupational and Environmental Medicine 2007; 64: 480-486) account also for site topography, stating:

Perception and annoyance were associated with terrain and urbanization: (1) A rural area increased the risk of perception and annoyance in comparison with a suburban area; and (2) in a rural setting, complex ground (hilly or rocky terrain) increased the risk compared with flat ground.

Professor John Harrison recommend specifically addressing the additive noise impact of wind turbulence as well as the summation of direct sound plus sound reflected from the ground (i.e., coherent reflection) (“Disconnect Between Turbine Noise Guidelines and Health Authority Recommendations”, white paper, Queen’s University, Ontario). …

Do you have any concluding remarks?

I believe that there is strong scientific evidence to conclude that wind turbine have inherent health risks related to low-frequency noise and infrasound. I believe that the safety of the pubic must be upheld over the ideals of green energy production, and that to protect the public wind turbine setbacks must be long enough to minimize the intensity of the sound such that it does not exceed 30-35 dBA at the residences. The lower level should be applied for children and the elderly, who are the most vulnerable. The setbacks are the be determined not only be distance, but must also accounting for site topography, turbulence and coherent reflection. Furthermore, as this case sets a precedent for future wind turbine siting, the outcome of these hearings must uphold the greater good of the residents of Connecticut regardless of political pressures and potential financial gains. This should be about what is right and correct, not “who wins the battle”.

Download original document: “Pre-filed testimony of David R. Lawrence, MD

This article is the work of the author(s) indicated. Any opinions expressed in it are not necessarily those of National Wind Watch.

Wind Watch relies entirely
on User Funding
Donate $5 PayPal Donate

Share:

Get the Facts Follow Wind Watch on Twitter

Wind Watch on Facebook

Share

CONTACT DONATE PRIVACY ABOUT SEARCH
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.
Share

Wind Watch on Facebook

Follow Wind Watch on Twitter