Go to multi-category search »

ISSUES/LOCATIONS

View titles only
(by date)
List all documents, ordered…

By Title

By Author

View PDF, DOC, PPT, and XLS files on line
RSS

Add NWW documents to your site (click here)

Sign up for daily updates

Keep Wind Watch online and independent!

Donate $10

Donate $5

News Watch

Selected Documents

Research Links

Alerts

Press Releases

FAQs

Publications & Products

Photos & Graphics

Videos

Allied Groups

Resource Documents — latest additions

Unless indicated otherwise, documents presented here are not the product of nor are they necessarily endorsed by National Wind Watch. These resource documents are shared here to assist anyone wishing to research the issue of industrial wind power and the impacts of its development. The information should be evaluated by each reader to come to their own conclusions about the many areas of debate. • The copyrights reside with the sources indicated. As part of its noncommercial effort to present the environmental, social, scientific, and economic issues of large-scale wind power development to a global audience seeking such information, National Wind Watch endeavors to observe “fair use” as provided for in section 107 of U.S. Copyright Law and similar “fair dealing” provisions of the copyright laws of other nations.


Date added:  November 10, 2019
SitingPrint storyE-mail story

Large eddy simulation study of the humidity variation in the shadow of a large wind farm

Author:  Haywood, John; et al.

Abstract—
Numerous studies have shown that wind turbine wakes within a large wind farm bring about changes to both the dynamics and thermodynamics of the atmospheric boundary layers (ABL). Previously, we investigated the relative humidity budget within a wind farm via field measurements in the near-wake region and large eddy simulations (LES). The effect of the compounding wakes within a large wind farm on the relative humidity was also investigated by LES. In this study, we investigate how the areas of relative humidity variation, that was observed in the near-wake, develop downstream in the shadow region of a large wind farm. To this end, LES of a wind farm consisting of 8×6 wind turbines with periodic boundary condition in the lateral direction (inferring an infinitely wide farm) interacting with a stable ABL is carried out. Two wind farm layouts, aligned and staggered, are considered in the analysis and the results from both configurations are compared to each other. It is observed that a decrease of relative humidity underneath the hub height and an increase above the hub height build up within the wind farm, and are maintained in the downstream of the farm for long distances. The staggered farm layout is more effective in keeping a more elongated region of low relative humidity underneath the hub, when compared to the aligned layout.

Qualitative representation of turbulence in the ABL via iso-surfaces of Q criterion colored by the streamwise velocity component (the ground is shown in green, and wind turbine rotors are shown in yellow): A, aligned layout; B, staggered layout. The streamwise direction is scaled down by a factor of 10.

John Stephen Haywood, Adrian Sescu, Department of Aerospace Engineering, Mississippi State University, Starkville
Kevin Allan Adkins, Department of Aeronautical Science, Embry Riddle Aeronautical Engineering, Daytona Beach, Florida

Wind Energy, 2019;1-9. Published online Nov. 8, 2019. DOI: 10.1002/we.2434

Download original document: “Large eddy simulation study of the humidity variation in the shadow of a large wind farm

Bookmark and Share


Date added:  November 4, 2019
Health, NoisePrint storyE-mail story

Case studies that have convinced me that industrial wind turbines make people sick

Author:  Acker, WilliamAcker, William

William G. Acker
Acker & Associates
Prepared: December 27, 2015 through Feb. 18, 2019

Download original document: “Some of the case studies that have convinced me that industrial wind turbines make people sick, which supports my belief that we can prove in a court of law that these wind turbines are causing annoyance and illnesses

Bookmark and Share


Date added:  October 14, 2019
Economics, Michigan, MinnesotaPrint storyE-mail story

Three estimates of decommissioning cost

Author:  Various

Brian R. Zelenak, Manager, Regulatory Administration, Xcel Energy, February 8, 2011 – re: Nobles Wind Energy Project, Minnesota, 1.5-MW turbines. [download]

A conservative estimate for a decommissioning expense is approximately four-hundred forty-five thousand dollars ($445,000) per turbine (2009 dollars).*

*Includes allowance for salvage value and based on total dismantling cost estimate for the project of 8.7% of the total plant balance of $510,965,406, equaling an estimated dismantling cost [of] $44.5 million or $445,000 per turbine. [NWW note: The Nobles project consists of 134 1.5-MW turbines, not 100, which would make the assumed 8.7% decommissioning cost $332,000 per turbine (2009 dollars).]

[$445,000 in 2009 is equivalent to $533,000 in 2019, $332,000 to $397,000.]

Wenck Associates, April 2017 – re: Palmer’s Creek Wind Farm, Minnesota, 2.5-MW turbines. [download]

The estimated cost to decommission Palmer’s Creek Wind Farm was provided by Fagen, Inc., construction contractor, in a letter dated November 16, 2016. The estimate is considered to be the current dollar value (at time of approval) of salvage value and removal costs. The estimated salvage value of each turbine will be based upon the worst-case scenario assuming the only salvage value of the turbine is from scrapping the steel. The estimate was based upon the total weight of one turbine, which is 275 tons consisting primarily of steel. Because it does not separate the scrap value of all the constituent materials, the estimate is very conservative. Also, it is highly likely that there would be opportunities for re-sale for reuse of all or some of the turbines or turbine components. Based on the current estimate, the cost of decommissioning is $7,385,822 with a potential scrap return value of $445,500 [net cost of $385,573 per turbine, $403,881 in 2019 dollars].

Henry Blattner, Senior Estimator, Blattner Energy, to Ryan Pumford, Nextera Energy, 2017 – re: Tuscola Wind III, Michigan, 2-MW turbines. [download]

To mobilize a crew and equipment, take down a GE wind turbine and haul off site the cost would be $675,000.00. Assuming a salvage value of $150 per ton and weight of 188 tons for the steel in the turbine and tower we [would] be able to reduce this cost by $28,200. The total price minus the salvaged steel would be $646,800.00.

Bookmark and Share


Date added:  October 10, 2019
Economics, Grid, IndianaPrint storyE-mail story

Couple statements about reliability and cost

Author:  Northern Indiana Public Service Company

Indiana Utility Regulatory Commission: Cause 45159 [link] —

Verified Direct Testimony of Andrew S. Campbell, Director of Regulatory Support & Planning, Northern Indiana Public Service Company (NIPSCO) [link]

Q18. How will reliability be maintained when the wind isn’t blowing?

A18. NIPSCO will continue to dispatch its steam and gas fleet and other available wind generation, as well as purchase power from MISO, to meet customer demand and reliability needs throughout the term of the Roaming Bison Wind Energy PPA. This ensures that when the wind is not blowing customers will continue to receive reliable service every hour of every day.

Verified Direct Testimony of Benjamin Felton, Senior Vice President, NIPSCO Electric [link]

Q23. Do reductions in the dispatch of NIPSCO’s coal units impact the cost to operate those units?

A23. Yes. NIPSCO’s coal units were engineered to be used as base load units that run consistently over long periods of time, and they were not designed to ramp up and down in response to short term market signals. As those units become less economical, the cost to operate them increases because in addition to the increased maintenance required of older units, the added expenses to ramp the units up and down are incurred more frequently. NIPSCO must remain mindful of how that added expense to customers balances against the impact on reliability. In spite of the cost control efforts NIPSCO has undertaken as I have referenced above, the operational characteristics of these plants dictate that some increases in costs cannot be avoided when the plants are operated outside of the parameters for which they were designed.

[This was the same Cause in which the Sierra Club asserted their interest, which was for an arm of the energy industry, not the environment: “Sierra Club seeks full intervention in order to ensure that its interests in lower cost and cleaner energy options are fully represented, and to bring to this proceeding its expertise in electric utility matters.” (link)]

Bookmark and Share


« Later DocumentsHomeEarlier Documents »

Get the Facts Follow Wind Watch on Twitter

Wind Watch on Facebook

Share

CONTACT DONATE PRIVACY ABOUT SEARCH
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.
Share

 Follow: