Go to multi-category search »

ISSUES/LOCATIONS

Documents Home
View PDF, DOC, PPT, and XLS files on line
RSS

Add NWW documents to your site (click here)

Sign up for daily updates

Keep Wind Watch online and independent!

Donate $10

Donate $5

News Watch

Selected Documents

Research Links

Alerts

Press Releases

FAQs

Publications & Products

Photos & Graphics

Videos

Allied Groups

Large eddy simulation study of the humidity variation in the shadow of a large wind farm  

Author:  | Siting

Abstract—
Numerous studies have shown that wind turbine wakes within a large wind farm bring about changes to both the dynamics and thermodynamics of the atmospheric boundary layers (ABL). Previously, we investigated the relative humidity budget within a wind farm via field measurements in the near-wake region and large eddy simulations (LES). The effect of the compounding wakes within a large wind farm on the relative humidity was also investigated by LES. In this study, we investigate how the areas of relative humidity variation, that was observed in the near-wake, develop downstream in the shadow region of a large wind farm. To this end, LES of a wind farm consisting of 8×6 wind turbines with periodic boundary condition in the lateral direction (inferring an infinitely wide farm) interacting with a stable ABL is carried out. Two wind farm layouts, aligned and staggered, are considered in the analysis and the results from both configurations are compared to each other. It is observed that a decrease of relative humidity underneath the hub height and an increase above the hub height build up within the wind farm, and are maintained in the downstream of the farm for long distances. The staggered farm layout is more effective in keeping a more elongated region of low relative humidity underneath the hub, when compared to the aligned layout.

Qualitative representation of turbulence in the ABL via iso-surfaces of Q criterion colored by the streamwise velocity component (the ground is shown in green, and wind turbine rotors are shown in yellow): A, aligned layout; B, staggered layout. The streamwise direction is scaled down by a factor of 10.

John Stephen Haywood, Adrian Sescu, Department of Aerospace Engineering, Mississippi State University, Starkville
Kevin Allan Adkins, Department of Aeronautical Science, Embry Riddle Aeronautical Engineering, Daytona Beach, Florida

Wind Energy, 2019;1-9. Published online Nov. 8, 2019. DOI: 10.1002/we.2434

Download original document: “Large eddy simulation study of the humidity variation in the shadow of a large wind farm

This material is the work of the author(s) indicated. Any opinions expressed in it are not necessarily those of National Wind Watch.

The copyright of this material resides with the author(s). As part of its noncommercial effort to present the environmental, social, scientific, and economic issues of large-scale wind power development to a global audience seeking such information, National Wind Watch endeavors to observe “fair use” as provided for in section 107 of U.S. Copyright Law and similar “fair dealing” provisions of the copyright laws of other nations. Send queries to query/wind-watch.org.

Wind Watch relies entirely
on User Funding
Donate $5 PayPal Donate

Share:

Get the Facts Follow Wind Watch on Twitter

Wind Watch on Facebook

Share

CONTACT DONATE PRIVACY ABOUT SEARCH
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.
Share

 Follow: