[ exact phrase in "" ]

[ including uploaded files ]


List all documents, ordered…

By Title

By Author

View PDF, DOC, PPT, and XLS files on line
Get weekly updates

when your community is targeted


RSS feeds and more

Keep Wind Watch online and independent!

Donate via Stripe

Donate via Paypal


Add NWW documents to your site (click here)

Wind Watch is a registered educational charity, founded in 2005.

How does intermittent wind power interact with controllable power? 

Author:  | Emissions, Grid

This article considers a typical load supplied by a set of identical controllable units. More and more wind power is then added to the production system, and the simulation shows how the system behaves and how the wind power is used.

The analysis considers only the energy and power balances at system level, using the Load Duration Curve representation of the load. No consideration is given to the network constraints, power prices and other similar topics. It is basically a theoretical exercise that uses simple hypothesis and modelling techniques to simulate the injection of intermittent power into a classical thermal system, and tries to illustrate what intermittent power is, how it works and what are its intrinsic limitations.

When a wind turbine begins to produce power, some running mirror controllable unit must reduce its output: this is backdown power. The amount of reduced power must remain ready to be produced again if the wind stops blowing: this is backup power. The wind turbine is so tightly coupled with its mirror controllable unit that from the point of view of the network operator they cannot be treated separately. Using this approach, it is possible to describe the way the wind power is inserted into the system, and to calculate the expected resulting output of the various units.

The model shows that the intermittent power is not “added” to the controllable power but is rather “merged” with it, partly replacing the controllable power and energy by its own. It explains why installation of wind power could not result in a reduction of installed conventional power. It describes how wind power destroys the power system by forcing controllable units to run in base. It shows the limits on installed wind power, and that these limits are mainly related to the availability of storage capacity. It asserts that the lack of storage capacity becomes critical when the total installed wind power exceeds some identified thresholds. Finally it describes how we could quantify the savings of CO₂ emissions due to wind power – and shows that there are probably no savings at all.

Download original document: “How does intermittent wind power interact with controllable power? The Dual IC model

This material is the work of the author(s) indicated. Any opinions expressed in it are not necessarily those of National Wind Watch.

The copyright of this material resides with the author(s). As part of its noncommercial educational effort to present the environmental, social, scientific, and economic issues of large-scale wind power development to a global audience seeking such information, National Wind Watch endeavors to observe “fair use” as provided for in section 107 of U.S. Copyright Law and similar “fair dealing” provisions of the copyright laws of other nations. Queries e-mail.

Wind Watch relies entirely
on User Funding
   Donate via Stripe
(via Stripe)
Donate via Paypal
(via Paypal)


e-mail X FB LI M TG TS G Share

Get the Facts
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.


Wind Watch on X Wind Watch on Facebook Wind Watch on Linked In

Wind Watch on Mastodon Wind Watch on Truth Social

Wind Watch on Gab Wind Watch on Bluesky