ISSUES/LOCATIONS

Documents Home
View PDF, DOC, PPT, and XLS files on line
RSS

Add NWW documents to your site (click here)

Sign up for daily updates

Keep Wind Watch online and independent!

Donate $10

Donate $5

News Watch

Selected Documents

Research Links

Alerts

Press Releases

FAQs

Publications & Products

Photos & Graphics

Videos

Allied Groups

High vulnerability of juvenile Nathusius’ pipistrelle bats (Pipistrellus nathusii) at wind turbines  

Author:  | Germany, Wildlife

[abstract] Large numbers of bats are killed by wind turbines globally, yet the specific demographic consequences of wind turbine mortality are still unclear. In this study, we compared characteristics of Nathusius’ pipistrelles (Pipistrellus nathusii) killed at wind turbines (N = 119) to those observed within the live population (N = 524) during the summer migration period in Germany. We used generalised linear mixed effects modelling to identify demographic groups most vulnerable to wind turbine mortality, including sex, age (adult or juvenile), and geographic origin (regional or long-distance migrant; depicted by fur stable hydrogen isotope ratios). Juveniles contributed with a higher proportion of carcasses at wind turbines than expected given their frequency in the live population suggesting that juvenile bats may be particularly vulnerable to wind turbine mortality. This effect varied with wind turbine density. Specifically, at low wind turbine densities, representing mostly inland areas with water bodies and forests where Nathusius’ pipistrelles breed, juveniles were found more often dead beneath turbines than expected based on their abundance in the live population. At high wind turbine densities, representing mostly coastal areas where Nathusius’ pipistrelles migrate, adults and juveniles were equally vulnerable. We found no evidence of increased vulnerability to wind turbines in either sex, yet we observed a higher proportion of females than males among carcasses as well as the live population, which may reflect a female bias in the live population most likely caused by females migrating from their north-eastern breeding areas migrating into Germany. A high mortality of females is conservation concern for this migratory bat species because it affects the annual reproduction rate of populations. A distant origin did not influence the likelihood of getting killed at wind turbines. A disproportionately high vulnerability of juveniles to wind turbine mortality may reduce juvenile recruitment, which may limit the resilience of Nathusius’ pipistrelles to environmental stressors such as climate change or habitat loss. Schemes to mitigate wind turbine mortality, such as elevated cut-in speeds, should be implemented throughout Europe to prevent population declines of Nathusius’ pipistrelles and other migratory bats.

Cecilia Kruszynski, Liam D. Bailey, Lothar Bach, Petra Bach, Marcus Fritze, Oliver Lindecke, Tobias Teige, Christian C. Voigt

Leibniz Institute for Zoo and Wildlife Research, Berlin; Institute of Biology, Freie Universität Berlin; Bach Freilandforschung, zoologische Gutachten, Bremen; Büro für faunistische Fachgutachten, Berlin, Germany

Ecological Applications. Published online December 7, 2021. doi: 10.1002/eap.2513

This material is the work of the author(s) indicated. Any opinions expressed in it are not necessarily those of National Wind Watch.

The copyright of this material resides with the author(s). As part of its noncommercial effort to present the environmental, social, scientific, and economic issues of large-scale wind power development to a global audience seeking such information, National Wind Watch endeavors to observe “fair use” as provided for in section 107 of U.S. Copyright Law and similar “fair dealing” provisions of the copyright laws of other nations. Queries e-mail.

Wind Watch relies entirely
on User Funding
Donate $5 PayPal Donate

Share:

Get the Facts Follow Wind Watch on Twitter

Wind Watch on Facebook

Share

CONTACT DONATE PRIVACY ABOUT SEARCH
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.
Share

 Follow: