[ posts only (not attachments) ]

ISSUES/LOCATIONS

View titles only
(by date)
List all documents, ordered…

By Title

By Author

View PDF, DOC, PPT, and XLS files on line
RSS

Add NWW documents to your site (click here)

Sign up for daily updates

Keep Wind Watch online and independent!

Donate $10

Donate $5

News Watch

Selected Documents

Research Links

Alerts

Press Releases

FAQs

Publications & Products

Photos & Graphics

Videos

Allied Groups

Resource Documents: Sweden (26 items)

RSSSweden

Unless indicated otherwise, documents presented here are not the product of nor are they necessarily endorsed by National Wind Watch. These resource documents are shared here to assist anyone wishing to research the issue of industrial wind power and the impacts of its development. The information should be evaluated by each reader to come to their own conclusions about the many areas of debate. • The copyrights reside with the sources indicated. As part of its noncommercial effort to present the environmental, social, scientific, and economic issues of large-scale wind power development to a global audience seeking such information, National Wind Watch endeavors to observe “fair use” as provided for in section 107 of U.S. Copyright Law and similar “fair dealing” provisions of the copyright laws of other nations.


Date added:  September 15, 2020
Health, Noise, SwedenPrint storyE-mail story

Laboratory study on the effects of wind turbine noise on sleep: results of the polysomnographic WiTNES study

Author:  Smith, Michael; Ögren, Mikael; Thorsson, Pontus; Hussain-Alkhateeb, Laith; Pedersen, Eja; Forssén, Jens; Ageborg Morsing, Julia; and Persson Waye, Kerstin

Abstract
Study Objectives: Assess the physiologic and self-reported effects of wind turbine noise (WTN) on sleep.
Methods: Laboratory sleep study (n = 50 participants: n = 24 living close to wind turbines and n = 26 as a reference group) using polysomnography, electrocardiography, salivary cortisol, and questionnaire endpoints. Three consecutive nights (23:00–07:00): one habituation followed by a randomized quiet Control and an intervention night with synthesized 32 dB LAEq WTN. Noise in WTN nights simulated closed and ajar windows and low and high amplitude modulation depth.
Results: There was a longer rapid eye movement (REM) sleep latency (+16.8 min) and lower amount of REM sleep (−11.1 min, −2.2%) in WTN nights. Other measures of objective sleep did not differ significantly between nights, including key indicators of sleep disturbance (sleep efficiency: Control 86.6%, WTN 84.2%; wakefulness after sleep onset: Control 45.2 min, WTN 52.3 min; awakenings: Control n = 11.4, WTN n = 11.5) or the cortisol awakening response. Self-reported sleep was consistently rated as worse following WTN nights, and individuals living close to wind turbines had worse self-reported sleep in both the Control and WTN nights than the reference group.
Conclusions: Amplitude-modulated continuous WTN may impact on self-assessed and some aspects of physiologic sleep. Future studies are needed to generalize these findings outside of the laboratory and should include more exposure nights and further examine possible habituation or sensitization.

Michael G. Smith, Mikael Ögren, Pontus Thorsson, Laith Hussain-Alkhateeb, Eja Pedersen, Jens Forssén, Julia Ageborg Morsing and Kerstin Persson Waye

Department of Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg; Division of Applied Acoustics, Department of Civil and Environmental Engineering, Chalmers University of Technology, Gothenburg; Akustikverkstan, Lidköping; and Department of Architecture and the Built Environment, Lund University, Lund, Sweden

Sleep, Volume 43, Issue 9, 1 September 2020, zsaa046, doi:10.1093/sleep/zsaa046

Download original document: “A laboratory study on the effects of wind turbine noise on sleep: results of the polysomnographic WiTNES study

Bookmark and Share


Date added:  September 19, 2019
Noise, Regulations, Sweden, TechnologyPrint storyE-mail story

In situ measured facade sound insulation of wind turbine sound

Author:  Thorsson, Pontus

ABSTRACT—
In most countries there are regulations of wind turbine sound level outdoors at dwellings. Often there are also regulations of the sound levels inside the dwelling, however not often directly aiming at wind turbine sound. The sound level indoors from wind turbines has attracted more interest in the latest years, and then especially in the low frequency region (up to 200 Hz). Studies on the in situ sound level difference between outside and inside of dwellings are however scarce. This paper presents the in situ measured sound level difference for two Swedish houses in rural locations, both using a loudspeaker and using the wind turbine sound as exciting signal. This is possible due to a 2 month long measurement series with simultaneous sound recordings outside and inside. The sound pressure level differences from the two methods are shown to differ substantially.

Pontus THORSSON, Akustikverkstan, Lidköping, Sweden

Proceedings of the 23rd International Congress on Acoustics, 9–13 September 2019, Aachen, Germany: pages 3826-3830

Download original document: “In situ measured facade sound insulation of wind turbine sound

Bookmark and Share


Date added:  March 13, 2018
Sweden, TechnologyPrint storyE-mail story

Wind turbine performance decline in Sweden

Author:  Olauson, Jon; Edström, Per; and Rydén, Jesper

[Abstract] We show that Swedish wind turbines constructed before 2007 lose 0.15 capacity factor percentage points per year, corresponding to a lifetime energy loss of 6%. A gradual increase of downtime accounts for around one third of the deterioration and worsened efficiency for the remaining. Although the performance loss in Sweden is considerably smaller than previously reported in the UK, it is statistically significant and calls for a revision of the industry practice for wind energy calculations. The study is based on two partly overlapping datasets, comprising 1,100 monthly and 1,300 hourly time series spanning 5–25 years each.

Jon Olauson, Division of Electricity, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
Per Edström, Sweco Energuide, Gothenburg, Sweden
Jesper Rydén, Department of Mathematics, Uppsala University, Uppsala, Sweden

Wind Energy 2017; 20(12):2049–2053. DOI: 10.1002/we.2132

Download original document: “Wind turbine performance decline in Sweden

Bookmark and Share


Date added:  March 12, 2018
Denmark, Finland, Grid, Norway, SwedenPrint storyE-mail story

Impact of Hourly Wind Power Variations on the System Operation in the Nordic Countries

Author:  Holttinen, Hannele

[abstract] The variations of wind power production will increase the flexibility needed in the system when significant amounts of load are covered by wind power. When studying the incremental effects that varying wind power production imposes on the power system, it is important to study the system as a whole: only the net imbalances have to be balanced by the system. Large geographical spreading of wind power will reduce variability, increase predictability and decrease the occasions with near zero or peak output. The goal of this work was to estimate the increase in hourly load-following reserve requirements based on real wind power production and synchronous hourly load data in the four Nordic countries. The result is an increasing effect on reserve requirements with increasing wind power penetration. At a 10% penetration level (wind power production of gross demand) this is estimated as 1·5%–4% of installed wind capacity, taking into account that load variations are more predictable than wind power variations.

Hannele Holttinen, Technical Research Centre of Finland

Wind Energy 2005; 8:197–218. DOI: 10.1002/we.143

Download original document: “Impact of Hourly Wind Power Variations on the System Operation in the Nordic Countries

Bookmark and Share


Earlier Documents »

Get the Facts Follow Wind Watch on Twitter

Wind Watch on Facebook

Share

CONTACT DONATE PRIVACY ABOUT SEARCH
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.
Share

 Follow: