Resource Documents: Latvia (2 items)
Unless indicated otherwise, documents presented here are not the product of nor are they necessarily endorsed by National Wind Watch. These resource documents are shared here to assist anyone wishing to research the issue of industrial wind power and the impacts of its development. The information should be evaluated by each reader to come to their own conclusions about the many areas of debate. • The copyrights reside with the sources indicated. As part of its noncommercial effort to present the environmental, social, scientific, and economic issues of large-scale wind power development to a global audience seeking such information, National Wind Watch endeavors to observe “fair use” as provided for in section 107 of U.S. Copyright Law and similar “fair dealing” provisions of the copyright laws of other nations.
Influence of wind turbines on radio astronomical observations in Irbene
Author: Bezrukovs, Dmitrijs
[abstract] The reflection and diffraction of external communication and navigational transmitters from tall constructions and moving blades of wind turbines produce some short-pulse additional electromagnetic interference strong enough to fully disturb radio astronomical observations. The problem of short-pulse electromagnetic interference is distinctive to all radio telescopes surrounded by wind turbines. This problem became significant for Ventspils International Radio Astronomy Centre (VIRAC) after new wind park “Platene” [near Platene and Vede] of Winergy Ltd. was built in 2012 and radio telescopes RT-16 and RT-32 renovated and equipped with cryogenic high sensitive receivers. The paper deals with the analysis and evaluation of intensities and probabilities of short-pulse interferences produced by wind park “Platene” and its possible impact on radio astronomical observations at VIRAC radio telescopes. (The distance from Irbene radio telescopes to [the wind turbines near] Platene is 19.7 km and to [those near] Vede is 8.2 km.)
Dmitrijs Bezrukovs
Ventspils International Radio Astronomy Centre, Ventspils, Latvia
Latvian Journal of Physics and Technical Sciences 2016, N 2, P 68-74
DOI: 10.1515/lpts-2016-0015
Download original document: “Influence of wind turbines on radio astronomical observations in Irbene”
Alberta, Arizona, Australia, California, Connecticut, Delaware, Denmark, Germany, Grid, Idaho, Illinois, Indiana, Iowa, Ireland, Italy, Latvia, Lithuania, Maine, Manitoba, Massachusetts, Michigan, Minnesota, Netherlands, New Hampshire, New Mexico, North Dakota, Ontario, Oregon, Poland, Portugal, Rhode Island, Spain, U.K., Washington •


Real-time wind production — various regions
Author: National Wind Watch
Europe: Quarter-hour load, generation, exchange – click on sample graph for other countries
Nordpool: Current power flow in the Nordic power system
West Denmark: Electricity prices, consumption, and production today, every 5 minutes
France: Quarter-hour consumption and production
France: Current, weekly, monthly, yearly demand and production
Germany: Quarter-hour net electricity generation
Germany: Quarter-hour wind production in EnBW control area (Baden-Württemberg)
Great Britain: Last 24 hours of generation by fuel type, every 5 minutes
Great Britain: Current, weekly, monthly, yearly demand and production
Ireland: Daily quarter-hour wind generation and system demand
Ireland: Quarter-hour system demand and fuel mix
Spain: 10-minute demand and generation share
Alberta: Monthly wind power forecast vs. actual comparison reports
Ontario: Latest hour of generation
Ontario: Daily hourly generation (scroll to bottom of table for wind plant)
Ontario: Hourly generation and other power data
Northwestern USA: Previous week, real-time 5-minute wind generation, Bonneville Power Administration
California: Daily hourly production, CAISO [click here to download complete report (PDF) from previous day.]
Barnstable, Massachusetts: hourly, daily, weekly, monthly, yearly production and consumption of a 100-kW turbine since June 1, 2011 (100% daily generation would be 2,400 kWh)
Scituate, Massachusetts: hourly, daily, weekly, monthly, yearly production and consumption of a 1.5-MW turbine since March 30, 2012 (100% daily generation would be 36,000 kWh)
Mark Richey Woodworking, Newburyport, Massachusetts: hourly, daily, monthly production of a 600-kW turbine since June 2009 (100% daily generation would be 14,400 kWh)
University of Delaware, Newark: current power output (kW) of 2,000-kW turbine