[ posts only (not attachments) ]

ISSUES/LOCATIONS

View titles only
(by date)
List all documents, ordered…

By Title

By Author

View PDF, DOC, PPT, and XLS files on line
RSS

Add NWW documents to your site (click here)

Sign up for daily updates

Keep Wind Watch online and independent!

Donate $10

Donate $5

News Watch

Selected Documents

Research Links

Alerts

Press Releases

FAQs

Publications & Products

Photos & Graphics

Videos

Allied Groups

BENEFITS : LOW  ↔  IMPACTS : HIGH

Resource Documents: Asia (1 items)

RSSAsia

Unless indicated otherwise, documents presented here are not the product of nor are they necessarily endorsed by National Wind Watch. These resource documents are shared here to assist anyone wishing to research the issue of industrial wind power and the impacts of its development. The information should be evaluated by each reader to come to their own conclusions about the many areas of debate. • The copyrights reside with the sources indicated. As part of its noncommercial effort to present the environmental, social, scientific, and economic issues of large-scale wind power development to a global audience seeking such information, National Wind Watch endeavors to observe “fair use” as provided for in section 107 of U.S. Copyright Law and similar “fair dealing” provisions of the copyright laws of other nations.


Date added:  February 21, 2022
India, WildlifePrint storyE-mail story

Responses of birds and mammals to long-established wind farms in India

Author:  Kumara, Honnavalli; et al.

Abstract: Wind turbines have been recognised as an alternative and clean-energy source with a low environmental impact. The selection of sites for wind-farm often creates serious conservation concerns on biodiversity. Wind turbines have become a serious threat to migratory birds as they collide with the turbine blades in some regions across the globe, while the impact on terrestrial mammals is relatively less explored. In this context, we assessed the responses of birds and mammals to the wind turbines in central Karnataka, India from January 2016 to May 2018 using carcass searches to quantify animal collisions (i.e., birds and bats), fixed radius point count for bird population parameters, and an occupancy framework for assessing the factor that determines the spatial occurrence of terrestrial mammals. The mean annual animal fatality rate per wind turbine was 0.26/year. Species richness, abundance, and unique species of birds were relatively higher in control sites over wind turbine sites. Species and functional compositions of birds in control sites were different from wind turbine sites, explaining the varied patterns of bird assemblages of different feeding guilds. Blackbuck, Chinkara, Golden Jackal, and Jungle Cat were less likely to occupy sites with a high number of wind turbines. The study indicates that certain bird and mammal species avoided wind turbine-dominated sites, affecting their distribution pattern. This is of concern to the management of the forested areas with wind turbines. We raised conservation issues and mitigating measures to overcome the negative effects of wind turbines on animals.

Honnavalli N. Kumara, S. Babu, G. Babu Rao, Santanu Mahato, Malyasri Bhattacharya, Nitin Venkatesh Ranga Rao, D. Tamiliniyan, Harif Parengal, D. Deepak, Athira Balakrishnan, Mahesh Bilaskar
Sálim Ali Centre for Ornithology and Natural History, Anaikatty, Coimbatore, Tamil Nadu; Manipal Academy of Higher Education, Madhav Nagar, Manipal, Karnataka; Biopsychology Laboratory, Institution of Excellence, University of Mysore, Mysuru, Karnataka; Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand; Bharathiar University, Coimbatore, Tamil Nadu; National Institute of Advanced Studies, Indian Institute of Science Campus, Bangalore, Karnataka; Department of Environmental Sciences, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, India

Scientific Reports volume 12, Article number: 1339 (2022). doi:10.1038/s41598-022-05159-1

Download original document: “Responses of birds and mammals to long-established wind farms in India

Bookmark and Share


Date added:  September 10, 2021
Health, Noise, TaiwanPrint storyE-mail story

Effects of low-frequency noise from wind turbines on heart rate variability in healthy individuals

Author:  Chiu, Chun-Hsiang; et al.

Abstract: Wind turbines generate low-frequency noise (LFN, 20–200 Hz), which poses health risks to nearby residents. This study aimed to assess heart rate variability (HRV) responses to LFN exposure and to evaluate the LFN exposure (dB, (LAeq) inside households located near wind turbines. Thirty subjects living within a 500 m radius of wind turbines were recruited. The field campaigns for LFN (LAeq) and HRV monitoring were carried out in July and December 2018. A generalized additive mixed model was employed to evaluate the relationship between HRV changes and LFN. The results suggested that the standard deviations of all the normal to normal R–R intervals were reduced significantly, by 3.39%, with a 95% CI = (0.15%, 6.52%) per 7.86 dB (LAeq) of LFN in the exposure range of 38.2–57.1 dB (LAeq). The indoor LFN exposure (LAeq) ranged between 30.7 and 43.4 dB (LAeq) at a distance of 124–330 m from wind turbines. Moreover, households built with concrete and equipped with airtight windows showed the highest LFN difference of 13.7 dB between indoors and outdoors. In view of the adverse health impacts of LFN exposure, there should be regulations on the requisite distances of wind turbines from residential communities for health protection.

· · · · ·

LFN exposure has been found to cause a variety of health conditions. Exposure to LFN from wind turbines results in headaches, difficulty concentrating, irritability, fatigue, dizziness, tinnitus, aural pain sleep disturbances, and annoyance. Clinically, exposure to LFN from wind turbines may cause increased risk of epilepsy, cardiovascular effects, and coronary artery disease. It was also found that exposure to noise (including LFN) may have an impact on heart rate variability (HRV). HRV is the variation over time of the period between adjacent heartbeats, which is an indicator of the activities of the autonomic nervous system, consisting of the sympathetic nervous system (SNS) and parasympathetic nervous system (PNS). Autonomic imbalance usually represents a hyperactive SNS and a hypoactive PNS and results in reduced HRV. An autonomic imbalance may increase the morbidity and mortality of cardiovascular diseases. A review paper indicated that road traffic noise may overactivate the hypothalamic-pituitary-adrenocortical axis (HPA) and sympathetic-adrenal-medullar axis (SAM), increase the blood pressure and reduce HRV, and finally affect the cardiovascular system. A recent study analyzing 658 measurements of HRV obtained from 10 healthy males (18–40 years old) indicated reductions in HRV due to environmental LFN exposure. However, few studies have specifically examined the effect of LFN from wind turbines on HRV in healthy individuals; thus, this was the aim of this study. …

Besides distance from turbines, building materials also affect indoor LFN exposure. This work assessed the indoor LFN levels for several recruited households with different building materials and open/closed windows to illustrate their potential impacts. It is known that materials have different sound absorption coefficients. The overall sound pressure level and spectrum of external noise change when transmitted to the interior of a building. Mid- and high-frequency noises are selectively attenuated by roofs and walls, causing the building structure to function like an LFN pass filter. Outdoor to indoor noise reduction generally decreases with frequency, [but variations exist] related to housing construction and room dimensions. [Below 2.5 Hz, the outdoor to indoor noise reduction is zero. (“Outdoor to indoor reduction of wind farm noise for rural residences,” Kristy Hansen, Colin Hansen, and Branko Zajamšek)] Factors contributing to indoor/outdoor noise reduction also include structural resonances, room modes, and coupling between the air volume inside the residence and the stiffness of the walls, roofs, and ceilings. 

Chun-Hsiang Chiu, Shih-Chun Candice Lung, Nathan Chen, Jing-Shiang Hwang, & Ming-Chien Mark Tsou
Research Center for Environmental Changes and Institute of Statistical Science, Academia Sinica; Department of Atmospheric Sciences and Institute of Environmental Health, National Taiwan University, Taipei, Taiwan

Scientific Reports volume 11, article number: 17817 (2021)
doi:10.1038/s41598-021-97107-8

Download original document: “Effects of low-frequency noise from wind turbines on heart rate variability in healthy individuals

Bookmark and Share


Date added:  September 21, 2019
Health, Japan, NoisePrint storyE-mail story

Epidemiological study on long-term health effects of low-frequency noise produced by wind power stations in Japan

Author:  Ishitake, Tatsuya; Norimatsu, Yoshitaka; and Hara, Kunio

ABSTRACT—
We investigated whether long-term exposure to wind turbine noise (WTN) including low-frequency noise generated by wind power facilities is a risk factor of sleep disorders. We performed an epidemiological study of living environment and health effects, surveying 9,000 residents (≥20 years) living in areas with operational wind power facilities. Sleep disorders were assessed using the Athens Insomnia Scale. To assess environmental noise in residential areas near the wind turbines, low-frequency sound exposure levels were measured at 50 community centers of the town. Multiple logistic regression analysis was used for evaluation of a risk factor for several noise exposure indices. Significant relationships between the distance from the nearest WT to dwellings and hearing, annoyance, sleep disorders were observed. By multiple logistic analysis the prevalence rate of sleep disorders was significantly higher for residents who reported subjectively hearing noise being than for those who did not. Moreover, the reported prevalence rate of sleep disorders was significantly higher in residents living at a distance of ≤1,500 m from the nearest wind turbine compared to that for residents living at a distance ≥2,000 m. The attitudes of residents towards wind power facilities and sensitivity to noise strongly affected their responses regarding sleep disorder prevalence.

Tatsuya ISHITAKE, Yoshitaka MORIMATSU, Kurume University, School of Medicine, Japan
Kunio HARA, University of Occupational and Environmental Health, School of Health Science, Japan

Proceedings of the 23rd International Congress on Acoustics, 9–13 September 2019, Aachen, Germany: pages 1455–1462

Download original document: “Epidemiological study on long-term health effects of low-frequency noise produced by wind power stations in Japan

Bookmark and Share


Date added:  May 30, 2019
India, WildlifePrint storyE-mail story

Avian mortalities from two wind farms at Kutch, Gujarat and Davangere, Karnataka, India

Author:  Kumar, Selvaraj Ramesh; et al.

[abstract] Wind power is renewable and helps reduce greenhouse gas emission from the energy sector; however, it also has undesirable impacts on the environment. Studies from Europe and the USA report negative impact of wind farms on wildlife, especially on birds. India, the fourth largest producer of wind energy and also a mega biodiverse country has little information on this issue. Here, we report bird collisions from two wind farms: one at Kutch, Gujarat in western India and another from Davangere, Karnataka in southern India. A total of 47 bird carcasses belonging to at least 11 species in a period of three years were reported from Kutch and seven carcasses of at least three species in a period of one year were recorded at Davengere wind farm. The estimated annual bird mortality rate for Kutch was 0.478 birds/turbine and for Davengere it was 0.466 birds/turbine.

Selvaraj Ramesh Kumar, Bombay Natural History Society, Mumbai 400 001, India
V. Anoop, P. R. Arun, Rajah Jayapal and A. Mohamed Samsoor Ali, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, India

CURRENT SCIENCE, VOL. 116, NO. 9, 10 MAY 2019

Download original document: “Avian mortalities from two wind farms at Kutch, Gujarat and Davangere, Karnataka, India

Bookmark and Share


Earlier Documents »

Get the Facts Follow Wind Watch on Twitter

Wind Watch on Facebook

Share

CONTACT DONATE PRIVACY ABOUT SEARCH
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.
Share

 Follow: