[ posts only (not attachments) ]


View titles only
(by date)
List all documents, ordered…

By Title

By Author

View PDF, DOC, PPT, and XLS files on line

Add NWW documents to your site (click here)

Sign up for daily updates

Keep Wind Watch online and independent!

Donate $10

Donate $5

News Watch

Selected Documents

Research Links


Press Releases


Publications & Products

Photos & Graphics


Allied Groups

Resource Documents: Noise (607 items)


Also see NWW press release on noise

Documents presented here are not the product of nor are they necessarily endorsed by National Wind Watch. These resource documents are provided to assist anyone wishing to research the issue of industrial wind power and the impacts of its development. The information should be evaluated by each reader to come to their own conclusions about the many areas of debate.

Date added:  January 22, 2018
NoisePrint storyE-mail story

Subjective perception of wind turbine noise – The stereo approach

Author:  Cooper, Steven; and Chan, Chris

The conduct of stereo measurements for both playback in high-quality headphones and in a hemi-anechoic room has been undertaken for a number of wind farms and other low-frequency noise sources as an expansion of the material previously presented at the Boston ASA meeting. The results of the additional monitoring, evaluation, and subjective analysis of this procedure are discussed and identifies the benefits of monitoring noise complaints and assessments of wind farm noise in stereo. The laboratory mono subjective system was used to reproduce the audio wave file obtained in a dwelling. The test signal, being inaudible, was presented as a pilot double blind provocation case control study to 9 test subjects who have been identified as being sensitized to wind turbine noise and low frequency pulsating industrial noise. All test subject could detect the operation of the inaudible test signal. The use of a stereo manikin to investigate detected inaudible ”hotspots” is discussed.

Figure 1: View of microphone set up

Figure 2: Manikin mic in ear and preamp on extension rods

Steven Edwin Cooper, Chris Chan
The Acoustic Group, Lilyfield, New South Wale, Australia

174th Meeting of the Acoustical Society of America
New Orleans, Louisiana, 4–8 December 2017

Download original document: “Subjective perception of wind turbine noise – The stereo approach

(((( o ))))

Subjective perception of wind turbine noise

The evaluation of wind turbine noise impacting upon communities is generally related to external noise environments and has a problem with separating wind turbine noise from ambient noise (which includes the presence of wind) which is not normally the case for general environmental noise. Subjective testing of wind turbine noise to examine amplitude modulation and subjective loudness has tended to use large baffle speaker systems to produce the infrasound/low-frequency noise and one high-frequency speaker – all as a mono source. Comparison of mono and stereo recordings of audible wind turbine noise played back in a test chamber and a smaller hemi-anechoic space provides a distinct different perception of amplitude modulation of turbines. A similar exercise compares use of high-quality full-spectrum headphones with the two different sound files applied to just the ears is discussed.

Steven Edwin Cooper
The Acoustic Group, Lilyfield, New South Wale, Australia

173rd Meeting of the Acoustical Society of America
Boston, Massachusetts, 25–29 June 2017

Download original document: “Subjective perception of wind turbine noise

Bookmark and Share

Date added:  December 9, 2017
Australia, Health, Law, NoisePrint storyE-mail story

Summary of the Effect of the Medical and Scientific Evidence

Author:  White, Richard; and Bean, Katherine

On our analysis, a number of propositions emerge from the medical and scientific evidence. Some of those propositions had unanimous support by the relevant experts, and others had the support of most.

The propositions which we understand have unanimous support from the relevant experts or are not contested include the following:

We consider that the evidence justifies the following conclusions:

Paragraphs 467–470, File Number 2015/4289
Decision and Reasons for Decision
Administrative Appeals Tribunal, Adelaide
Taxation & Commercial Division
Re Waubra Foundation (Applicant) and Commissioner of Australian Charities and Not-for-profits Commission (Respondent)

The Honourable Justice White, Deputy President
Deputy President K Bean
4 December 2017

Download complete file.

Bookmark and Share

Date added:  December 5, 2017
Noise, TechnologyPrint storyE-mail story

Consistent modelling of wind turbine noise propagation from source to receiver

Author:  Barlas, Emre; et al.

Abstract —
The unsteady nature of wind turbine noise is a major reason for annoyance. The variation of far-field sound pressure levels is not only caused by the continuous change in wind turbine noise source levels but also by the unsteady flow field and the ground characteristics between the turbine and receiver. To take these phenomena into account, a consistent numerical technique that models the sound propagation from the source to receiver is developed. Large eddy simulation with an actuator line technique is employed for the flow modelling and the corresponding flow fields are used to simulate sound generation and propagation. The local blade relative velocity, angle of attack, and turbulence characteristics are input to the sound generation model. Time-dependent blade locations and the velocity between the noise source and receiver are considered within a quasi-3D propagation model. Long-range noise propagation of a 5 MW wind turbine is investigated. Sound pressure level time series evaluated at the source time are studied for varying wind speeds, surface roughness, and ground impedances within a 2000 m radius from the turbine.

Emre Barlas, Wen Zhong Shen, and Kaya O. Dag
— Department of Wind Energy, Technical University of Denmark, Kongens Lyngby, Denmark
Wei Jun Zhu – School of Hydraulic, Energy and Power Engineering, Yangzhou University, Yangzhou, China
Patrick Moriarty – National Wind Technology Center, National Renewable Energy Laboratory, Boulder, Colorado, USA

The Journal of the Acoustical Society of America 2017 Nov;142(5):3297.
doi: 10.1121/1.5012747.

Download original document: “Consistent modelling of wind turbine noise propagation from source to receiver

Bookmark and Share

Date added:  December 1, 2017
Health, NoisePrint storyE-mail story

Why wind turbine sounds are annoying, and why it matters

Author:  Palmer, William

Abstract —
Almost without hesitation, most people can identify a sound that is annoying to them, whether it might be fingernails on a chalkboard, a barking dog late at night, a mosquito buzzing in their ear, or their own particular example. Classic acoustics texts identify key points related to annoyance. These “special characteristics of noise” include tonality, a non-random cyclical nature, pitch, roughness, rise time, and dominance of noise during sleeping hours when environmental noises diminish. A new source of environmental sound arises from wind turbines, a rapidly growing method of generating electricity. Studies such as the “Health Canada Wind Turbine Noise and Health Study” have documented noise annoyance complaints. This paper categorizes wind turbine noise complaints based on face-to-face interviews with impacted individuals, and correlates logs of complaints to conditions at the time. Recordings made in a controlled manner of environmental sound samples, such as flowing streams, wind in coniferous trees, or wind in bare or leafed deciduous trees as well as other sounds found in the environment, such as vehicles passing by on highways, aircraft overhead, and railway travel are compared with sound recordings from wind turbines. The comparisons included analysis of LZeq, LAeq, narrow band analysis, evaluation of amplitude and frequency modulation, and fluctuation strength. Development of modifiers to normal LAeq sound limits is suggested to improve the effectiveness of regulations. A key finding shows annoyance is related more to changes and characteristics at a particular time, rather than to longterm averages of sound. Why annoying sounds matter is a complex subject. Some consider “annoying” has little impact more than, “your gum chewing is annoying,” while for others, an annoying sound can mean loss of sleep, and loss of that restorative time itself has many documented adverse effects.

William Palmer
Global Environment, Health and Safety 2017, Vol.1, No. 2: 12

Download original document: “Why wind turbine sounds are annoying, and why it matters

Bookmark and Share

« Later DocumentsHomeEarlier Documents »

Get the Facts Follow Wind Watch on Twitter

Wind Watch on Facebook


© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.

Wind Watch on Facebook

Follow Wind Watch on Twitter