[ exact phrase in "" ]

[ including uploaded files ]

ISSUES/LOCATIONS

List all documents, ordered…

By Title

By Author

View PDF, DOC, PPT, and XLS files on line
Get weekly updates

WHAT TO DO
when your community is targeted

RSS

RSS feeds and more

Keep Wind Watch online and independent!

Donate via Paypal

Donate via Stripe

RSS

Add NWW documents to your site (click here)

Wind Watch is a registered educational charity, founded in 2005.

Economic impacts from the promotion of renewable energies: the German experience 

Author:  | Economics, Emissions, Germany

Executive Summary

An aggressive policy of generously subsidizing and effectively mandating “renewable” electricity generation in Germany has led to a doubling of the renewable contribution to electricity generation in recent years.

This preference came primarily in the form of a subsidy policy based on feed-in tariffs, established in 1991 by the Electricity Feed-in Law.

A subsequent law passed in 2000 guaranteed continued support for 20 years. This requires utilities to accept the delivery of power from independent producers of renewable electricity into their own grid, paying technology-specific feed-in tariffs far above their production cost of 2 to 7 Euro-Cents (2.9-10.2 Cents US $) per kilowatt hour (kWh).

With a feed-in tariff of 43 Euro-Cents (59 Cents US $) per kWh in 2009, solar electricity generated from photovoltaics (PV) is guaranteed by far the largest financial support among all renewable energy technologies. Currently, the feed-in tariff for PV is more than eight times higher than the wholesale electricity price at the power exchange and more than four times the feed-in tariff paid for electricity produced by on-shore wind turbines.

Even on-shore wind, widely regarded as a mature technology, requires feed-in tariffs that exceed the per-kWh cost of conventional electricity by up to 300% to remain competitive.

By 2008 this had led to Germany having the second-largest installed wind capacity in the world, behind the United States, and largest installed PV capacity in the world, ahead of Spain. This explains the claims that Germany’s feed-in tariff is a great success.

Installed capacity is not the same as production or contribution, however, and by 2008 the estimated share of wind power in Germany’s electricity production was 6.3%, followed by biomass-based electricity generation (3.6%) and water power (3.1%). The amount of electricity produced through solar photovoltaics was a negligible 0.6% despite being the most subsidized renewable energy, with a net cost of about 8.4 Bn € (US $12.4 Bn) for 2008.

The total net cost of subsidizing electricity production by PV modules is estimated to reach 53.3 Bn € (US $73.2 Bn) for those modules installed between 2000 and 2010. While the promotion rules for wind power are more subtle than those for PV, we estimate that the wind power subsidies may total 20.5 Bn € (US $28.1 Bn) for wind converters installed between 2000 and 2010.

Consumers ultimately bear the cost of renewable energy promotion. In 2008, the price mark-up due to the subsidization of green electricity was about 1.5 Cent per kWh (2.2 Cents US $), meaning the subsidy accounts for about 7.5% of average household electricity prices.

Given the net cost of 41.82 Cents/kWh for PV modules installed in 2008, and assuming that PV displaces conventional electricity generated from a mixture of gas and hard coal, abatement costs are as high as 716 € (US $1,050) per tonne. Using the same assumptions and a net cost for wind of 3.10 Cents/kWh, the abatement cost is approximately 54 € (US $80). While cheaper than PV, this cost is still nearly double the ceiling of the cost of a per-ton permit under Europe’s cap-and-trade scheme. Renewable energies are thus among the most expensive GHG reduction measures.

There are much cheaper ways to reduce carbon dioxide emissions than subsidizing renewable energies. CO2 abatement costs of PV are estimated to be as high as 716 € (US $1,050) per tonne, while those of wind power are estimated at 54 € (US $80) per tonne. By contrast, the current price of emissions certificates on the European emissions trading scheme is only 13.4 Euro per tonne. Hence, the cost from emission reductions as determined by the market is about 53 times cheaper than employing PV and 4 times cheaper than using wind power.

Moreover, the prevailing coexistence of the EEG and emissions trading under the European Trading Scheme (ETS) means that the increased use of renewable energy technologies generally attains no additional emission reductions beyond those achieved by ETS alone. In fact, since the establishment of the ETS in 2005, the EEG’s net climate effect has been equal to zero.

While employment projections in the renewable sector convey seemingly impressive prospects for gross job growth, they typically obscure the broader implications for economic welfare by omitting any accounting of off-setting impacts. These impacts include, but are not limited to, job losses from crowding out of cheaper forms of conventional energy generation, indirect impacts on upstream industries, additional job losses from the drain on economic activity precipitated by higher electricity prices, private consumers’ overall loss of purchasing power due to higher electricity prices, and diverting funds from other, possibly more beneficial investment.

Proponents of renewable energies often regard the requirement for more workers to produce a given amount of energy as a benefit, failing to recognize that this lowers the output potential of the economy and is hence counterproductive to net job creation. Significant research shows that initial employment benefits from renewable policies soon turn negative as additional costs are incurred. Trade and other assumptions in those studies claiming positive employment turn out to be unsupportable.

In the end, Germany’s PV promotion has become a subsidization regime that, on a per-worker basis, has reached a level that far exceeds average wages, with per-worker subsidies as high as 175,000 € (US $ 240,000).

It is most likely that whatever jobs are created by renewable energy promotion would vanish as soon as government support is terminated, leaving only Germany’s export sector to benefit from the possible continuation of renewables support in other countries such as the US.

Due to their backup energy requirements, it turns out that any increased energy security possibly afforded by installing large PV and wind capacity is undermined by reliance on fuel sources – principally gas – that must be imported to meet domestic demand. That much of this gas is imported from unreliable suppliers calls energy security claims further into question.

Claims about technological innovation benefits of Germany’s first-actor status are unsupportable. In fact, the regime appears to be counterproductive in that respect, stifling innovation by encouraging producers to lock into existing technologies.

In conclusion, government policy has failed to harness the market incentives needed to ensure a viable and cost-effective introduction of renewable energies into Germany’s energy portfolio. To the contrary, Germany’s principal mechanism of supporting renewable technologies through feed-in tariffs imposes high costs without any of the alleged positive impacts on emissions reductions, employment, energy security, or technological innovation. Policymakers should thus scrutinize Germany’s experience, including in the US, where there are currently nearly 400 federal and state programs in place that provide financial incentives for renewable energy.

Although Germany’s promotion of renewable energies is commonly portrayed in the media as setting a “shining example in providing a harvest for the world” (The Guardian 2007), we would instead regard the country’s experience as a cautionary tale of massively expensive environmental and energy policy that is devoid of economic and environmental benefits.

Download original document: “Economic impacts from the promotion of renewable energies: the German experience

This material is the work of the author(s) indicated. Any opinions expressed in it are not necessarily those of National Wind Watch.

The copyright of this material resides with the author(s). As part of its noncommercial educational effort to present the environmental, social, scientific, and economic issues of large-scale wind power development to a global audience seeking such information, National Wind Watch endeavors to observe “fair use” as provided for in section 107 of U.S. Copyright Law and similar “fair dealing” provisions of the copyright laws of other nations. Queries e-mail.

Wind Watch relies entirely
on User Funding
   Donate via Paypal
(via Paypal)
Donate via Stripe
(via Stripe)

Share:

e-mail X FB LI TG TG Share

Get the Facts
CONTACT DONATE PRIVACY ABOUT SEARCH
© National Wind Watch, Inc.
Use of copyrighted material adheres to Fair Use.
"Wind Watch" is a registered trademark.

 Follow:

Wind Watch on X Wind Watch on Facebook

Wind Watch on Linked In Wind Watch on Mastodon